Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.5, 988-993, 2008
NaClO2를 이용한 NO 산화 특성
Characteristics of NO Oxidation Using NaClO2
고정층 반응기에 충진한 NaClO2에 의한 NO 산화특성을 온도와 가스조건 그리고 공간속도 등을 변화시켜가며 알아보았다. NaClO2와 NO의 반응은 온도에 크게 의존함을 알 수 있었다. 110 oC까지 NaClO2와 NO의 반응성은 천천히 증가하고 그 이후의 온도에서는 빠르게 증가하였으며 170 oC 부근에서 가장 높은 반응성을 나타내는 것을 확인하였다. 하지만 190 oC 이상의 온도에서는 NaClO2가 NaCl, NaClO3, 상전이하여 NO와의 반응성이 나타나지 않았다. NaClO2와 NO 반응의 주 생성물은 NO2였으며 가스상 형태의 ClNO, ClNO2 등이 부산물로 나타났다. 이는 NaClO2에 의한 NO의 산화물인 NO2와 NaClO2가 반응하여 가스상 부산물인 OClO를 생성하고, 생성된 OClO가 잔류하는 NO를 NO2로 산화시키며 발생되는 Cl에 의한 것임을 확인하였다. 이와 함께 수분 및 산소의 변화는 NO 산화에 주는 영향이 미미하다는 것을 알 수 있었다.
The characteristics of NO oxidation using sodium chlorite (NaClO2) powder have been investigated by a flow type packed-bed reactor, where the reaction temperature and the space velocity are varied in the range of 20~230 oC and 0.4-2.2×105 hr-1, respectively, and the simulation gas mixtures are composed of NO (0~200 ppm), NO2 (0-200 ppm), O2 (0~15%) and H2O (0~15%) within N2 balance. It has been found that the oxidation efficiency of NO depends greatly on the reaction temperature, exhibiting the existence of critical reaction temperature at about 170 oC where the oxidation efficiency of NO is maximized and then abruptly decreased with further increase of reaction temperature, resulting in being negligible over 190 oC. Such a behavior in the oxidation efficiency has been originated from the phase transition of NaClO2 at about 170 oC to form NaClO3, and NaCl which are chemically inactive toward the oxidation of NO. The chemical reaction of NO with NaClO2 has been observed to produce NO2, ClNO and ClNO2, whereas that of NO2 only OClO species. Additionally, we have also observed that the introduction of O2 and H2O has little influence on the oxidation of NO.
[References]
  1. Broer S, Hammer T, Appl. Catal. B: Environ., 28(2), 101, 2000
  2. Mok YS, J. Chem. Eng. Jpn., 39(3), 366, 2006
  3. Odenbrand CUI, Andersson LAH, Brandin JGM, Lundin ST, Appl. Catal., 27, 363, 1986
  4. Olsson L, Westerberg B, Persson H, Fridell E, Skoglundh M, Andersson B, J. Phys. Chem. B, 103(47), 10433, 1999
  5. Mok YS, Koh DJ, Shin DN, Kim KT, Fuel Process. Technol., 86(3), 303, 2004
  6. Deshwal BR, Lee SH, Jung JH, Shon BH, Lee HK, J. Environ. Sci., 20, 33, 2008
  7. Chien TW, Chu H, J.Hazard. Mater., B80, 43, 2000
  8. Brogren C, Karlsson HT, Bjerle I, Chem. Eng. Technol., 21(1), 61, 1998
  9. Lee HK, Deshwal BR, Yoo KS, Korean J. Chem. Eng., 22(2), 208, 2005
  10. Stern KH, High Temperature Properties and Thermal Decomposition of Inorganic Salts with Oxyanions, CRC publication (2000)
  11. Li ZJ, Wuebbles RD, Pylawka NJ, Chem. Phys. Lett., 354(5-6), 491, 2002
  12. Lee JH, Michael JV, Payne WA, Stief LJ, J. Chem. Phys., 68, 5410, 1978
  13. Parthiban S, Lee TJ, Guha S, Francisco JS, J. Am. Chem. Soc., 125(34), 10446, 2003
  14. Sayin H, McKee ML, J. Phys. Chem. A, 109(21), 4736, 2005