Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.5, 977-982, 2008
전분 기질에 대한 Saccharomyces cerevisiae CHY1077과 Zymomonas mobilis CHZ2501의 에탄올 발효 비교
Comparison of Ethanol Fermentation by Saccharomyces cerevisiae CHY1077 and Zymomonas mobilis CHZ2501 from Starch Feedstocks
유가의 급등과 화석 연료의 고갈, 환경 오염문제 등에 대비하기 위하여 대체 수송 연료로서의 바이오에탄올에 대한 관심이 고조되고 있으며, 이에 따라 바이오에탄올 생산비용 절감을 위한 연구가 매우 활발하다. 본 연구에서는 에탄올 생산성 향상을 위하여 Zymomonas mobilis의 에탄올 발효특성을 Saccharomyces cerevisiae와 비교하였다. 음료용 에탄올 생산균주로 오랫동안 사용되어 온 효모와 연료용 에탄올 생산균주로서의 Z. mobilis의 가능성을 검토한 바 최종 에탄올 생성 농도는 큰 차이가 없었으나, 에탄올 생성속도는 Z. mobilis가 S. cerevisiae에 비해 2배 이상 빨랐다. 에탄올 생산성을 비교해 보면 현미, 쌀보리, 카사바의 경우 Z. mobilis는 2.19 g/l·h, 2.60 g/l·h, 3.12 g/l·h인 반면 S. cerevisiae는 0.68 g/l·h, 1.03 g/l·h, 1.28 g/l·h 이었다. 증류액 내의 불순물은 S. cerevisiae는 iso-amylalcohol이 Z. mobilis는 ethyl heptanoate 농도가 상대적으로 높았다.
The production of ethanol by microbial fermentation as an alternative energy source has been of interest because of increasing oil price. Saccharomyces cerevisiae and Zymomonas mobilis are two of the most widely used ethanol producers. In this study, characteristics of ethanol fermentation by Saccharomyces cerevisiae CHY1077 and Zymomonas mobilis CHZ2501 was compared. Brown rice, naked barley, and cassava were selected as representatives of the starch-based raw materials commercially available for ethanol production. The volumetric ethanol productivities by Saccharomyces cerevisiae from brown rice, naked barley and cassava were 0.68 g/l·h, 1.03 g/l·h and 1.28 g/l·h respectively. But for the Zymomonas mobilis, 2.19 g/l·h(brown rice), 2.60 g/l·h(naked barley) and 3.12 g/l·h(cassava) were obtained. Zymomonas mobilis was more efficient strain for ethanol production than S. cerevisiae.
[References]
  1. Von Blottnitz H, Curran MA, J. Clean. Prod., 15, 607, 2007
  2. Willke T, Vorlop KD, Appl. Microbiol. Biotechnol., 66(2), 131, 2004
  3. Aristidou A, Penttila M, Curr. Opin. Biotechnol, 11, 187, 2000
  4. Camacho-Ruiz L, Perez-Guerra N, Roses RP, Electron. J. Environ. Agric.Food Chem., 2, 531, 2003
  5. Ergun M, Mutlu SF, Bioresour. Technol., 73(3), 251, 2000
  6. Gee KB, Choi CY, Korean J. Chem. Eng., 1(1), 13, 1984
  7. Dien BS, Cotta MA, Jeffries TW, Appl. Microbiol. Biotechnol., 63(3), 258, 2003
  8. Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW, Biotechnol. Bioeng., 58(2-3), 204, 1998
  9. Rogers PL, Jeon YJ, Lee KJ, Lawford H, Adv.Biochem. Eng. Biotechnol., 108, 263, 2007
  10. Rogers PL, Lee KJ, Tribe DE, Biotechnol. Lett., 1, 165, 1979
  11. Hsu T, in Wyman, C. E. (ed), Pretreatment of Biomass. In Handbook on Bioethanol - Production and Utilization, Washington DC: Taylor & Francis, 179-212(1996)
  12. Seo JS, Chong HY, Park HS,Yoon KO, Jung CH, Kim JJ, Hong JH, Kim HT, Kim JH, Kil JI, Park CJ, Oh HM, Lee JS, Jin SJ, Um HW, Lee HJ, Oh SJ, Kim JY, Kang HL, Lee SY, Lee K J, Kang HS, Nat. Biotechnol., 23, 63, 2005
  13. Nijssen LM, Visscher CA, Maarse H, Willemsens LC, Boelens MH, Volatile Compound in Food: Qualitative and Quantitative Data, 7th ed., TNO Nutrion and Food Research Institute, The Netherlands, 661(1996)