Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.5, 903-914, 2008
모노에틸렌 글리콜 생산공정의 정상상태 모사 및 에너지 절약 최적화 연구
Steady-state Simulation and Energy-saving Optimization of Monoethylene Glycol Production Process
본 연구는 ethylene oxide로부터 monoethylene glycol을 주제품으로 생산하는 상용화된 실제 공정의 생산 능력 증가시에 필요한 공정 모사와 에너지 절감을 위한 최적화 연구로서, 공정에 관여하는 다성분계의 기/액 상평형 거동을 NRTL-RK식으로 나타내고, 필요한 총 91개의 2성분계쌍의 상호작용 파라미터 값들로는 8개의 2성분계쌍에 대해서는 Aspen PlusTM 상용 모사기(Ver. 2006)에 내장된 값, 28개의 쌍에 대해서는 상평형 데이터를 문헌에서 조사하여 회귀분석하고 나머지 2성분계에 대해서는 모사기 내의 추산 기능을 이용하여 구한 값을 사용하였으며, 공정 모사 결과와 실제 공정 데이터와의 비교를 통해 상평형 계산의 정확성을 확인한 후, 모사기에 내장된 민감도 분석 기능을 사용하여 전체 에너지 소모량에 대한 각 장치의 민감도를 조사하여 적절한 조절변수를 선정하고 모사기 내에 내장되어 있는 순차적 2차 계획법에 의한 최적화 기능을 이용하여 공정 전체의 에너지 절약을 위한 최적화 작업을 수행하였다.
This study was undertaken for the production capacity expansion and energy saving through entire process simulation and optimization for the commercial process of manufacturing monoethylene glycol as a staple from ethylene oxide. Aspen PlusTM(ver. 2006) was employed in the simulation and optimization work. The multicomponent vaporliquid equilibria involved in the process were calculated using the NRTL-RK equation. As for the binary interaction parameters required for a total of 91 binary systems, those for 8 systems were self-supplied by the simulator, those for 28 systems were estimated through regression of the VLE data in the literature, and the remainder were estimated with the estimation system built in the simulator. Subsequent to ascertaining the accuracy of the generated parameters through comparison between actual and simulated process data, sensitive variables highly affecting the process were searched and selected using sensitivity analysis tool in the simulator. The optimum operating conditions minimizing the total heat duty of the process were investigated using the optimization tool based on the successive quadratic programming in the simulator.
[References]
  1. Peters MS, Timmerhaus KD, West RE, Plant design and Economics for Chemical Engineers, 5th ed., McGRAWHILL, New York, 335-392(2003)
  2. Jang KS, “Plant-wide Optimization of a TPA Process Using Simulator,” M. A Dissertation, Pohang University of Science and Technology, Pohang(2004)
  3. Seider WD, Seader JD, Lewin DR, Product & Process Design Principles, 2nd ed., WILEY, New York, 45-48(2004)
  4. Takahashi S, Song KY, Kobayashi R, J. Chem. Eng. Data, 29, 23, 1984
  5. Fredenslund A, Sather GA, J. Chem. Eng. Data, 17, 440, 1972
  6. Zhang S, Tsuboi A, Nakata H, Ishikawa T, J. Chem. Eng. Data, 48, 167, 2003
  7. Bae HK, Nagahama K, Hirata M, J. Chem. Eng. Data, 27, 25, 1982
  8. Davalos J, Anderson WR, Phelps RE, Kidnay AJ, J. Chem. Eng. Data, 21, 81, 1976
  9. Spano JO, Heck CK, Barrick PL, J. Chem. Eng.Data, 13, 168, 1968
  10. Somait FA, Kidnay AJ, J. Chem. Eng. Data, 23, 301, 1978
  11. Stryjek R, Chappelear PS, Kobayashi R, J.Chem. Eng. Data, 19, 334, 1974
  12. Stryjek R, Chappelear PS, Kobayashi R, J.Chem. Eng. Data, 19, 340
  13. Anthony RG, McKetta JJ, J. Chem. Eng. Data, 12, 21, 1967
  14. Helntzt A, Streett WB, J. Chem. Eng. Data, 27, 465, 1982
  15. Tsierkezos NG, Molinou IE, J. Chem. Eng. Data, 43(6), 989, 1998
  16. Wei MS, Brown TS, Kidnay AJ, Sloan ED, J. Chem. Eng. Data, 40(4), 726, 1995
  17. Fredenslund A, Mollerup J, Hall KR, J. Chem. Eng. Data, 21, 301, 1976
  18. Bezanehtak K, Combes GB, Dehghani F, Foster NR, J. Chem. Eng. Data, 47, 161, 2002
  19. Wichterle I, Kobayashi R, J. Chem. Eng. Data, 17, 9, 1972
  20. Mraw SC, Hwang SC, Kobayashi R, J.Chem. Eng. Data, 23, 135, 1978
  21. Keshtkar A, Jalali F, Moshfeghian M, Fluid Phase Equilib., 145(2), 225, 1998
  22. Twu CH, Tassone V, Sim WD, Watanasiri S, Fluid Phase Equilib., 228, 213, 2005
  23. Kang SP, Lee H, Lee CS, Sung WM, Fluid Phase Equilib., 185(1-2), 101, 2001
  24. Folas GK, Berg OJ, Solbraa E, Fredheim AO, Kontogeorgis GM, Michelsen ML, Stenby EH, Fluid Phase Equilib., 251(1), 52, 2007
  25. Li XS, Englezos P, Fluid Phase Equilib., 224(1), 111, 2004
  26. Scifinder Scholar data base
  27. http://www.cheric.org/research/kdb/hcvle/hcvle.php
  28. Beaton CF, Hewitt GF, Physical Property Data for the Design Engineer, Hemisphere Pub. Corp., New York, 338-341(1989)
  29. Melles S, Grievink J, Schrans SM, “Optimization of the Conceptual Design of Reactive Distillation Columns,” Chemical Engineering Science, 55, 2089-2097(2000)
  30. Bandyopadhyay S, Chem. Eng. J., 88(1-3), 175, 2002
  31. Monroy-Loperena R, Perez-Cisneros E, Alvarez-Ramirez J, Chem. Eng. Sci., 55(21), 4925, 2000
  32. Soave G, Feliu JA, Applied Thermal Engineering, 22, 889, 2002
  33. Hou WF, Su HY, Hu YY, Chu J, Chin. J. Chem. Eng., 14(5), 584, 2006
  34. Langston P, Hilal N, Shingfield S, Webb S, Chem. Eng. Process., 44(3), 345, 2005
  35. Munoz R, Monton JB, Burguet MC, de la Torre J, Sep. Purif. Technol., 50(2), 175, 2006
  36. Lee JC, Yeo YK, Song KH, Kim IW, Korean J. Chem. Eng., 18(4), 428, 2001
  37. Neves FJM, Silva DCM, Oliveira NMC, Comput. Chem. Eng., 29(6), 1457, 2005
  38. Chang H, Li JW, Chem. Eng. Sci., 60(10), 2771, 2005
  39. Barttfeld M, Aguirre PA, Grossmann IE, Comput. Chem. Eng., 27(3), 363, 2003