Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.5, 886-891, 2008
접촉 글로우 방전 전기분해(CGDE)에 의한 후코이단의 저분자화
Depolymerization of Fucoidan by Contact Glow Discharge Electrolysis(CGDE)
접촉 글로우방전 전기분해(CGDE)는 일반적인 전기분해와 다르게 높은 전압에서 전극과 전극을 둘러싼 전해질 사이에 글로우 방전에 의한 플라즈마가 형성돼 일어나는 전기분해다. 본 연구에서는 먼저 NaCl 용액에서 CGDE 거동을 파악하고 그리고 CGDE에 의한 후코이단의 저분자화에 대해 연구하였다. NaCl 전해질에서 CGDE 과정이 시작되면 전압 증가에 따라 글로우 방전이 활발하게 되고 그에 따라 전류밀도가 감소하고 온도가 내려갔다. 반응시간에 따른 후 코이단의 분자량 변화로부터 저분자화반응은 1차 반응속도 식을 따름을 보였다. CGDE에 의해 후코이단의 분자량이 처음의 약 1/40로 감소하였으며, CGDE 저분자화 과정에서 황산기 함량과 fucos 함량의 감소가 없었다.
Contact glow discharge electrolysis(CGDE) is an unconventional electrolysis where plasma is sustained by D.C. glow discharge between an electrode and the surface of electrolyte surrounding it at high voltage. In this study, the behavior of CGDE in NaCl solution and the depolymerization of fucoidan by CGDE were investigated. After onset of CGDE, increase of voltage enhanced Glow discharge which resulted in low current density and low temperature in NaCl electrolyte. From the variation of molecular weight of fucoidan with the reaction time, it was demonstrated that the degradation of fucoidan followed a first-order rate law. Molecular weight of fucoidan treated with CGDE was about 40 times lower compared to initial fucoidan without content decrease of sulfate and fucos.
[References]
  1. Tatiana NZ, Nataliiya MS, Irina BP, Vladimir VI, Andrey SS, Elena V S, Lyudmila AE, Carbohydrate Research, 322, 32, 1999
  2. Fortun A, Khalil A, Gagne D, Douziech N, Kuntz C, Dupuis G, Atherosclerosis, 156, 11, 2001
  3. Collis S, Fisher AM, Tapon-Bretaudiere J, Boisson C, Durand P, Jozefonvicz J, Thtombosis Research, 64, 143, 1991
  4. Mauray S, Raucourt E, Talbot J, Jozefowicz M, Fischer A, Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology, 1387, 184, 1998
  5. Saito A, Yoneda M, Yokohama S, Okada M, Haneda M, Nakamura K, Hepatology Research, 35, 190, 2006
  6. Nora MAP, Carlos AP, Elsa BD, Maria LF, Carlos AS, Carbohydrate Research, 338, 153, 2003
  7. Kariya Y, Mulloy B, Imai K, Tominaga A, Kaneko T, Asari A, Suzuki K, Masuda H, Kyogashima M, Carbohydrate Research, 339, 1339, 2004
  8. Lionel C, Alain F, Sylvia C, Jacqueline R, J. of Chromatography A, 869, 353, 2000
  9. Alain N, Frederic C, Catherine BV, Patrick D, Jacquline J, Carbohydrate Research, 289, 201, 1996
  10. Lionel C, Alain F, Frederic C, Nelly K, Corinne S, Anne-Marie F, Catherine B, Carbohydrate Research, 319, 154, 1999
  11. Regis D, Olivier B, Jacqueline J, Nicole G, Carbohydrate Research, 322, 291, 1999
  12. Sengupta SK, Singh R, Srivastava AK, J. Electrochem. Soc., 145(7), 2209, 1998
  13. Gao J, Wang X, Hu Z, Deng H, Hou J, Lu X, Kang J, Water Research, 37, 267, 2003
  14. Tezuka M, Iwasaki M, Plasmas & Ions, 1, 23, 1999
  15. Lu Q, Yu J, Gao J, J. of Hazardous Materials, B136, 526, 2006
  16. Dodgson KS, Biochem. J., 78, 312, 1961