Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.5, 880-885, 2008
분무열분해 공정을 이용한 메조기공을 가지는 실리카 구형입자의 제조
Preparation of Mesoporous and Spherical-shaped Silica Particles by Spray Pyrolysis
분무열분해 공정을 이용하여 규칙적인 메조기공을 가지는 실리카 분말을 제조하고 고표면적을 얻기 위한 합성조건을 최적화하였다. 주형제로 이용된 CTAB의 양과 액적들의 반응기 내에서 체류시간을 변화시켜주면서 입자를 제조하고 SEM, BET, SAXS, 그리고 DLS를 통해 분말특성을 조사하였다. 기체 유입속도를 고정하고 CTAB/TEOS 몰비를 0.05에서 0.30으로 변화시킴에 따라 비표면적은 200에서 1,290 m2/g으로 변화였다. CTAB/TEOS 몰비를 고정했을 때 입자의 비표면적은 기체의 유입속도에 따라 1,062에서 1,305 m2/g 사이에서 변화되었다. 제조된 입자들의 BJH 탈착에 의한 평균 기공 크기는 21~23A를 가졌으며, CTAB/TEOS 몰비나 기체 유입속도에 크게 영향을 받지 않았다. 최대 표면적은 CTAB/TEOS 비를 0.2, 기체 유속을 20 l/min으로 했을 때 1,305 m2/g를 얻었다. 제조된 실리카 분말은 육방형구조의 규칙적인 기공에 기인한 2θ=2.6o 강한 피크와 2θ=4.4 및 5.1o 약한 피크를 가지는 것을 SAXS 분석결과로 확인하였다. 제조된 실리카 분말은 구형의 형상을 가졌으며 1.0 μm의 평균크기를 가졌다.
Spray pyrolysis was applied to prepare spherical silica particles with mesopores of a regular structure. The physical properties such as surface area, pore size, pore structure, particle size, and morphology were studied by BET, SEM, SAXS, and DLS analysis. At a fixed gas flow rate, the BET surface area changed from 200 to 1,290 m2/g as changing the CTAB/TEOS molar ratio from 0.05 to 0.3. At a fixed CTAB/TEOS ratio, the surface area of silica particles was varied from 1,062 to 1,305 m2/g with changing the gas flow rate from 10 to 40 l/min. The average pore size measured by BJH desorption was about 21~23 A and not significantly influenced by the CTAB/TEOS ratio and the gas flow rate. Finally, the highest surface area which was 1,305 m2/g were obtained when the CTAB/TEOS ratio and the gas flow rate were 0.2 and 20 l/min, respectively. According to SAXS analysis, the prepared silica particles showed a strong peak at 2θ=2.6o and two minor peaks around 2θ=4.4o and 5.1o, which are due to regular mesopores of hexagonal structure. The morphology of silica particles prepared were spherical shape and the average particle size was 1.0 μm.
[References]
  1. Corma A, Chem. Rev., 97(6), 2373, 1997
  2. Rao GVR, Lopez GP, Bravo J, Pham H, Datye AK, Xu HF, Ward TL, Adv. Mater., 14(18), 1301, 2002
  3. Nooney RI, Dhanasekaran T, Chem Y, Josephs R, Ostafin AE, Chem. Mater., 14, 4721, 2002
  4. Chung JS, Kim DJ, Ahn WS, Ko JH, Cheong WJ, Korean J. Chem. Eng., 21(1), 132, 2004
  5. Roh HS, Chang JS, Park SE, Korean J. Chem. Eng., 16(3), 331, 1999
  6. Lu Y, Fan H, Stump A, Ward TL, Rieker T, Brinker CJ, Nature, 398, 223, 1999
  7. Bore MT, Rathod SB, Ward TL, Datye AK, Langmuir, 19(2), 256, 2003
  8. Fan H, Swol FV, Lu Y, Brinker CJ, J. Non-Crystal. Solids, 258, 71, 2001
  9. Hampsey JE, Arsenault S, Hu Q, Lu Y, Chem. Mater., 17, 2475, 2005
  10. Jung KY, Kang YC, Park YK, J. Ind. Eng. Chem., 14(2), 224, 2008
  11. Jung KY, Lee HW, J.Lumin, 126, 469, 2007
  12. Gurav A, Kodas TT, Pluym T, Xiong Y, Aerosol Sci. & Tech., 19, 411, 1993
  13. Ortega J, Kodas TT, J. Aerosol Sci., 23, 253, 1992