Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.5, 863-867, 2008
무전해 도금법으로 제조된 구리 함유 활성탄소섬유 촉매의 제조와 NO 제거 반응성 평가
Preparation of Electroless Copper Plated Activated Carbon Fiber Catalyst and Reactive Evaluation of NO Remova
피치계 활성탄소섬유가 납사분해 잔사유를 개질하여 용융 방사하고, 산화, 탄화 및 스팀으로 활성화하여 제조되었다. 활성탄소섬유의 표면은 주석-팔라듐을 사용하여 단일 스텝에 의해 예민화 과정을 거쳤다. 예민화된 활성탄소섬유 표면에 무전해도금법을 사용하여 구리를 골고루 담지하였다. 도금시간을 증가시켜서 구리의 담지량을 변화시키고, BET, SEM, XRD 및 ICP를 이용하여 촉매 특성 변화에 미치는 영향을 관찰하였다. 도금시간에 따라 부가된 구리의 양은 증가하나, 기공부피와 비표면적은 감소하였다. 또한 반응 온도가 증가함에 따라 NO 제거 성능이 증가하였다. 300 oC 이상의 반응 온도에서 부가된 구리의 양이 증가하면 표면적의 감소와 구리 분산도의 감소 때문에 NO 제거 성능은 감소하는 결과를 얻었다.
Pitch based activated carbon fiber(ACF) was prepared from reformed naphtha cracking bottom oil(NCB oil) by melt spinning. The fibers obtained were stabilized, carbonized, and then steam activated. The ACF was sensitized with Pd-Sn catalytic nuclei via a single-step activation approach. This sensitized ACF was used as precursors for obtaining copper plated ACFs via electroless plating. ACFs uniformly decorated with metal particles were obtained with reduced copper plating in the reaction solution. Effects of the amount of copper on characteristics of ACF/Cu catalysts were investigated through BET surface area, X-ray diffraction, scanning emission microscopy, and ICP. The amount of copper increased with plating time, but the surface area as well as the pore volume decreased. NO conversion increased with reaction temperature. NO conversion decreased with increasing the amount of copper, which is seemed to be due to the reduction of surface area as well as the dispersion of copper.
[References]
  1. Park SJ, Jang YS, Shim JW, Ryu SK, J. Colloid Interface Sci., 260(2), 259, 2003
  2. Yang CM, Kaneko K, J. Colloid Interface Sci., 246(1), 34, 2002
  3. Gregorio M, Raquel A, Antonio BF, Applied Catalysis B, 41, 323, 2003
  4. Wang ZM, Yamashita N, Wang ZX, Hoshinoo K, Kanoh H, J. Colloid Interface Sci., 276(1), 143, 2004
  5. Huang ZH, Kang F, Liang KM, Hao J, J. Hazardous Materials, B98, 107, 2003
  6. Lee WK, Kim KH, Ryu SK, Park BS, Korean Chem. Eng. Res., 42(2), 196, 2004
  7. Park SJ, Kim BJ, Kawasaki J, HWAHAK KONGHAK, 41(6), 795, 2003
  8. Oh KH, Journal of the Korean fiber society, 38, 309, 2001
  9. Kim NI, Jang SS, Electroless Plating, Dong Hwa Technology Publishing(1996)
  10. Park BJ, Park SJ, Ryu SK, J. Colloid Interface Sci., 217(1), 142, 1999
  11. Yang SB, Min BK, Choi SD, Shin HJ, J. Korean Institute of Surface Engineering, 34, 215, 2001
  12. Lee HK, Shin MJ, Kim SW, Yeo WK, J.Korean Institute of Surface Engineering, 26, 263, 1993
  13. Choi SD, Park BD, J. Korean Institute of Surface engineering, 25, 173, 1992
  14. Park SJ, Shin JS, J. Colloid Interface Sci., 264(1), 39, 2003