Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.5, 858-862, 2008
전분질계 바이오매스의 동시당화발효 조건 최적화
The Optimum Condition of SSF to Ethanol Production from Starch Biomass
분리 당화발효(Separate Hydrolysis and Fermentation, SHF)는 당화와 발효공정을 따로 수행하는 방법으로 최종 생성물인 글루코오스에 의해 억제 영향을 받기 때문에 반응에 진행됨에 따라 축적된 글루코오스의 농도가 높아지면 반응이 종결되는 단점이 있다. 이를 극복하기 위해 효소의 양을 늘리는 방법이 있지만, 효소의 생산비용이 비싸기 때문에 경제적인 방법이 될 수 없다. 이러한 분리 당화발효 공정의 단점을 극복하기 위해서 동시당화발효 공정(Simultaneous Saccharification and Fermentation, SSF)은 하나의 반응기에서 당화와 발효를 동시에 수행한다. 동시당화발효 공정에서는 당화과정에서 글루코오스가 생성되자마자 효모가 발효과정을 통해 글루코오스를 바로 제거하기 때문에 반응기내에서 당의 축적을 최소화할 수 있다. 따라서 동시당화발효 공정은 최종 생성물의 억제 작용을 방지할 수 있고, 효소의 가수분해 반응을 향상시킬 수 있다. 본 연구에서는 동시당화발효에서 에탄올의 수율에 관여하는 조건들(pH, 반응온도, 효소 투입량, 반응시간)의 최적 조건을 찾는 연구를 수행하였다. 기질로는 감자전분을 사용하였고, 효소는 glucoamylase, 균주는 Saccharomyces cerevisiae가 각각 사용되었다. 동시당화발효의 최적의 조건은 pH 4, 온도 38로 나타났다. 최적의 조건으로 감자전분을 동시당화발효하였을 때 반응 18시간 후에 에탄올은 최대 수율 86%에 도달하였다.
The Simultaneous Saccharification and Fermentation(SSF) of ethanol production from potato starch studied with respect to growth pH, temperature, substrate concentration. The glucoamylase and Saccharomyceses cerevisiae have a capacity to carry out a single stage SSF process for ethanol production. The characteristics, termed as starch hydrolysis, accumulation of glucose, ethanol production and biomass formation, were affected with variation in pH, temperature and starch concentration. The maximum ethanol concentration of 12.9g/l was obtained using a starch concentration 30g/l, which represent an ethanol yield of 86%. The optimum conditions for the maximum ethanol yield were found to be a temperature of 38, pH of 4.0 and fermentation time of 18hr. Thus by using the control composite design, it is possible to determine the accurate values of the fermentation parameters where maximum production of ethanol occurs.
[References]
  1. Ahn D, Chang HN, Microbiol. Biotechnol, 19, 497, 1991
  2. Ratnam BVV, Rao MN, Rao MD, Ayyanna C, J. Microbiol. Biotech., 19, 523, 2003
  3. Birol G, Onsan ZI, Kirdar B, Oliver SG, Enzyme Microb. Technol., 22(8), 672, 1998
  4. Zhao H, Kwak JH, Zhang C, Brown HM, Arey BW, Johnathan EH, Carbohydr. Sci. Direct., 68, 235, 2006
  5. Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito T, Ueda M, Satoh E, Fukuda H, Kondo A., Appl. Environ. Microbiol., 70, 5037, 2004
  6. Chen H, Jin S, Enzyme Microb. Technol., 39(7), 1430, 2006
  7. Eksteen JM, Rensburg PV, Cordero RR, Petorius I, Biotechnol. Bioeng., 98, 639, 2003
  8. Huang LP, Jin B, Lant P, Zhou J, Biochem. Engineer.J., 23, 265, 2005
  9. Polakovic M, Bryjak J, Biochem.Engineer. J., 18, 57, 2004
  10. Kim N, Kim JS, Theories Applicat. Chem. Eng., 10, 1546, 2004
  11. Aggrawal NK, Nigam P, Singh D, Yadav BS, J.Microbiol. Biotech., 17, 738, 2001
  12. Mukerjea R, Slocum G, Mukerjea R, Robyt JF, Carbohydr. Research, 341, 2049, 2006
  13. Kim S, Dale BE, Biomass Bioenerg., 26(4), 361, 2004
  14. Heitmann T, Wenzig E, Mersmann A, Enzyme Microb. Technol., 20(4), 259, 1997
  15. Murai T, Yoshino T, Ueda M, Haranoya I, Ashikari T, Yoshizumi H, Tanaka A, J. Ferment. Bioeng., 86(6), 569, 1998