Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.5, 833-844, 2008
해양조류로부터 바이오에너지 생산: 현황 및 전망
Production of Bio-energy from Marine Algae: Status and Perspectives
바이오에너지는 화석연료의 소비를 감소시키는 기회를 제공한다. 태양, 바람, 수력발전 및 지열, 그리고 바이오매스 자원으로부터 생성된 에너지는 재생이 가능하다. 대부분의 바이오에너지들은 태양으로부터 직ㆍ간접적으로 생산되기 때문에 화석연료와 달리 신재생에너지의 충분한 공급이 가능하다. 또한 바이오에너지의 이용은 환경적인 측면 뿐 아니라 정치, 경제적으로 이익을 제공한다. 바이오에너지는 이산화탄소의 순증가가 없고 무공해의 에너지 형태를 제공하는 해양 자원으로부터 생산 될 수 있다. 본 총설에서는 지구의 약 75%가 바다로 이루어져 있음을 고려해 볼 때 바이오에너지 생산을 위한 해양 바이오매스의 잠재력에 대해 검토한다.
Bio-energy offers the opportunity to lessen fossil fuel consumption. Energy derived from solar, wind, hydroelectric, geothermal, and biomass sources are considered renewable. Because most forms of bio-energy are derive deither directly or indirectly from the sun, there is an abundant supply of renewable energy available, unlike fossil fuels. The use of bio-energy also provides environmental, economic and political benefits. Bio-energy can be produced from a marine source such as biomass provides a CO2 neutral, non-polluting form of energy. In this paper, the potential of marine biomass is increasingly discussed, given the size of the resource in that more than three quarters of the surface of planet earth is covered by water.
[References]
  1. Mclaren JS, Trends Biotechnol., 23, 339, 2005
  2. Wright L, Biomass Bioenerg., 30(8-9), 706, 2006
  3. Agarwal AK, Progr. Energ.Combust. Sci., 33, 233, 2007
  4. Arnulf JW, “Status of PV Research, Solar Cell Production and Market Implementation in Japan, USA and European Union,” European Commission, Joint Research Center(2002)
  5. McNelis B, “The Photovoltaic Business: Manufacturers and Markets,” Electricity from Sunlight, IT Power, UK(1997)
  6. Demirbas A, Progr.Energ. Combust. Sci., 33, 1, 2007
  7. Gereene N, “Growing Energy: How Biofuels can Help end America’s Oil Dependence,” Natural Resources Defense Council, New York(2004)
  8. Asif M, Muneer T, Rene. Sustain.Energ. Rev., 11, 1388, 2006
  9. Kang SH, Choi SJ, Kim JW, Trans. of the Korean Hydrogen and New Energy Society, 18, 216, 2007
  10. International Energy Outlood 2004, EIA (Energy Information Administration)(2004)
  11. Tolbert NE, in J. Preiss(Ed.), Regulation of atmosferic CO2 and O2 by photosynthetic Carbon Metabolism, Oxford University Press, Oxford, 8-33(1994)
  12. Chisti Y, Biotechnol. Adv., 25, 294, 2007
  13. Huntley M, Redalje DG, Mitigation and Adaptation Strategies for Global Change, 12, 573, 2007
  14. Li XF, Xu H, Wu QY, Biotechnol. Bioeng., 98(4), 764, 2007
  15. Pulz O, Gross W, Appl. Microbiol. Biotechnol., 65(6), 635, 2004
  16. Berndes G, Hoogwijk M, van den Broek R, Biomass Bioenerg., 25(1), 1, 2003
  17. Kanetsuna Y, Phycological Research, 50, 101, 2002
  18. Mchugh DJ, FAO.FAO Fish. Tech. Pap., 441, 105, 2003
  19. Arne J, Hydrobiologia, 260, 15, 1993
  20. Skjak-Bræk G, Martinsen A, in M. D. Guiry, G. Blunden (Ed.), Seaweed Resources in Europe: Uses and Potential, John Wiley & Sons, Chichester, UK, 219-257(1991)
  21. Kloareg B, Quatrano RS, Oceanogr. Mar. Biol. Ann. Rev., 26, 259, 1998
  22. Percival E, British Phycological Journal, 14, 103, 1979
  23. Costanza R, Darge R, Degroot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, Oneill RV, Paruelo J, Raskin RG, Sutton P, Vandenbelt M, Nature, 387(6630), 253, 1997
  24. Luning K, Pang SJ, J. Appl. Phycol., 15, 115, 2003
  25. http://seaweed.ucg.ie.
  26. http://bio.sch.ac.kr/~hwshin/STUDYDATA.htm.
  27. Buck BH, Krause G, Rosenthal H, Ocean Coast. Manag., 47, 95, 2004
  28. Buck BC, Buchholz CM, J.Appl. Phycol., 16, 355, 2004
  29. Reith JH, Deurwaarder EP, Hemmes K, Curvers APWM, Brandeburg W, Zeeman G, “Bio-offshore: Grootschalige Teelt Van Zeewieren in Combinatie Met Offshore Windparken in de Noordzee,” ECN(2005)
  30. Chynoweth DP, “Review of Biomethane from Marine Biomass,” Ph. D. Dissertation, Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida (2002)
  31. Reina GG, “Culture Collections and Herbaria in European Countries,” European Communities, Italy(1996)
  32. Munoz R, Guieysse B, Water Res., 40, 2799, 2006
  33. Davis TA, Volesky B, Mucci A, Water Res., 37, 4311, 2003
  34. Lee MG, Lim JH, Kam SK, Korean J. Chem. Eng., 19(2), 277, 2002
  35. Yu Q, Kaewsarn P, Korean J. Chem. Eng., 16(6), 753, 1999
  36. Lee JS, Lee JP, Biotechnol. Bioproc. Eng., 8, 354, 2003
  37. Slesser M, Lewis C, Biological energy resources, John Wiley & Sons, New York(1979)
  38. Sheehan J, Dunahay T, Benemann J, Roessler P, “A Look Back at the U.S. Department of Energy’s Aquatic Species Program-biodiesel from Algae,” NREL/TP-580-24190. U.S. Department of Energy’s Office of Fuels Development(1998)
  39. Ben-Amotz A, Tornabene TG, J. Phycol., 21, 72, 1985
  40. Banerjee A, Sharma R, Chisti Y, Banerjee UC, Crit. Rev. Biotechnol., 22, 245, 2002
  41. Metzger P, Largeau C, Appl. Microbiol. Biotechnol., 66(5), 486, 2005
  42. Xu H, Miao XL, Wu Q, J. Biotechnol., 126, 499, 2006
  43. Kishimoto M, Okakura T, Nagashima H, Minowa T, Yokoyama S, Yamaberi K, J. Ferment. Bioeng., 78(6), 479, 1994
  44. Tsukahara K, Sawayama S, J. Jpn. Petrol. Inst., 48, 251, 2005
  45. Valenzuela-Espinoza E, Millan-Nunez R, Nunez-Cebrero F, Aquac. Eng, 25, 207, 2002
  46. Negoro M, Shioji N, Miyamoto K, Miura Y, Appl.Biochem. Biotechnol., 28, 877, 1991
  47. Hu Q, Zhang C, Sommerfeld M, J.Phycol., 42, 1, 2006
  48. Kyle DJ, Gladue RM, “Eicosapentaenoic Acids and Methods for Their Production,” U. S. Patent No. 5244921(1991)
  49. Zittelli GC, Rodolfi L, Biondi N, Tredici MR, Aquaculture, 261, 932, 2006
  50. Brown MR, Dunstan GA, Norwood SJ, Miller KA, J. Phycol., 32, 64, 1996
  51. Dijkstra AJ, Eur. J. Lipid Sci. Tech., 108, 249, 2006
  52. Jang ES, Jung MY, Min DB, Compr. Rev. Food Sci.Food Saf., 4, 22, 2005
  53. Ross PE, Am. Sci., 293, 25, 2005
  54. McInerney MJ, Bryant MP, in D. L. Wise(Ed.), “Fuel Gas Production from Biomass: Review of Methane Fermentation Fundamentals,” CRC Press, Boca Raton, Florida(1983)
  55. Brock TD, Madigan MT, Martinko JM, Parker J, “Biology of Microorganisms,” Prentice Hall, USA(1994)
  56. LEGRAND R, Biomass Bioenerg., 5(3-4), 301, 1993
  57. Bird KT, in Bird KT, Benson PH(Eds.), Seaweed Cultivation for Renewable Resources: Cost Analyses of Energy from Marine Biomass, Elsevier, Amsterdam, 327-350(1987)
  58. Bird KT, Chynoweth DP, Jerger DE, J.Appl. Phycol., 2, 207, 1990
  59. CHYNOWETH DP, TURICK CE, OWENS JM, JERGER DE, PECK MW, Biomass Bioenerg., 5(1), 95, 1993
  60. Kerner KN, Hanssen JF, Pedersen TA, Bioresour. Technol., 37, 17, 1991
  61. Morand P, Carpentier B, Charlier RH, Maze J, Orlandini M, Plunkett BA, De Waart J, in Guiry MD, Blunden G(Eds), Seaweed Resources in Europe: Bioconversion of Seaweeds, John Wiley & Sons, Chichester, 95-148(1991)
  62. Markov SA, Bazin MJ, Hall DO, Eng. Biotech., 52, 60, 1995
  63. Marz, Bakterien-Energiekraftwerke der Zukunft., Umwelt Magazin, pp53(1998)
  64. Levin DB, Pitt L, Love M, Int. J. Hydrogen Energy, 29, 173, 2004
  65. Prince RC, Kheshgi HS, Crit. Rev. Microbiol., 31, 19, 2005
  66. Rupprecht J, Hankamer B, Mussgnug JH, Ananyev G, Dismukes C, Kruse O, Appl. Microbiol. Biotechnol., 72(3), 442, 2006
  67. Hankammer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O, Photosynthetic Biomass and H2 Production by Green Algae: from Bioengineering to Bioreactor Scale up, Physiologia Plantarum in Press(2007)
  68. Benemann JR, Weare NM, Science, 184, 174, 1974
  69. Amos WA, “Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae,” NREL/MP-560-35593. National Renewable Energy Laboratory(2004)
  70. http://www.renewableenergyaccess.com.
  71. Canakci M, Sanli H, J. Ind. Microbiol.Biotechnol., 35, 431, 2008
[Cited By]
  1. Lee SM, Yu BJ, Kim YM, Choi SJ, Ha JM, Lee JH, Journal of the Korean Industrial and Engineering Chemistry, 20(3), 290, 2009
  2. Lee SM, Kim JH, Cho HY, Joo H, Lee JH, Journal of the Korean Industrial and Engineering Chemistry, 20(5), 517, 2009
  3. Seo MW, Kim SD, Na JG, Lee SH, Korean Chemical Engineering Research, 47(6), 734, 2009
  4. Kim J, Lee Y, Jung S, Lee J, Cho MH, Clean Technology, 16(1), 51, 2010
  5. Lee SM, Lee JH, Applied Chemistry for Engineering, 21(2), 154, 2010
  6. Choi JH, Park YB, Lee SH, Cheon JK, Woo HC, Korean Chemical Engineering Research, 48(5), 583, 2010
  7. Choi JH, Park YB, Lee SH, Cheon JK, Choi JW, Woo HC, Korean Chemical Engineering Research, 48(5), 643, 2010
  8. Kim, Lee ES, Kim W, Suh DJ, Ahn BS, Clean Technology, 17(2), 156, 2011
  9. Lee SM, Lee JH, Journal of Industrial and Engineering Chemistry, 18(1), 16, 2012
  10. Na CK, Song MK, Korean Chemical Engineering Research, 50(1), 141, 2012
  11. Kim HJ, Lee SM, Kim SK, Lee JH, Applied Chemistry for Engineering, 23(1), 100, 2012
  12. Lee SM, Lee JH, Applied Chemistry for Engineering, 23(2), 164, 2012
  13. Lee SM, Kim GH, Lee JH, Journal of Industrial and Engineering Chemistry, 18(4), 1512, 2012
  14. Lee SM, Lee JH, Journal of Industrial and Engineering Chemistry, 18(5), 1662, 2012
  15. Kim JY, Jeong HS, Woo DS, Kim SM, Kim IS, Lee JH, Applied Chemistry for Engineering, 23(6), 594, 2012
  16. Choi JH, Song MK, Chun BS, Lee CW, Woo HC, Clean Technology, 19(2), 148, 2013
  17. Song M, Pham HD, Seon J, Woo HC, Korean Journal of Chemical Engineering, 32(4), 567, 2015
  18. Kim J, Ha SH, Korean Chemical Engineering Research, 53(5), 570, 2015
  19. Kim AR, Park MR, Kim HS, Kim SK, Jeong GT, Korean Chemical Engineering Research, 55(1), 74, 2017
  20. Yang SD, Kim HJ, Park JH, Kim DH, Clean Technology, 28(3), 232, 2022