Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.4, 806-812, 2008
귀금속촉매하에서 암모니아의 전환반응
Ammonia Conversion in the Presence of Precious Metal Catalysts
귀금속촉매 존재하에서 암모니아 전환반응은 배가스내의 암모니아를 처리하는데 중요한 기술이다. 과잉용액 함침법을 이용하여 Pt-Rh/Al2O3, Pt-Rh/TiO2, Pt-Rh/ZrO2, Pt-Pd/Al2O3, Pd-Rh/Al2O3, Pd-Rh/TiO2, Pd-Rh/ZrO2, Pt-Pd-Rh/Al2O3, Pd/Ga-Al2O3, Rh/Ga-Al2O3, 그리고 Ru/Ga-Al2O3의 촉매를 제조하였다. 제조된 촉매는 1/4"의 반응기에 10,000~50,000 hr-1의 공간속도 조건하에서 촉매활성능 실험을 수행하였다. 암모니아의 초기농도는 2,000 ppm (나머지는 공기)으로 유지하였다. T50는 암모니아 전환율이 50%일 때를 나타내는 온도를, T90은 90%의 전환율일 때의 온도를 나타낸다. 알루미나를 담지체로 사용했을때의 T50와 T90은 다른 담체를 사용했을때의 T50와 T90보다 훨씬 낮았다. Pd-Rh촉매의 경우 Al2O3를 담체로 사용하였을 때 ZrO2나 TiO2보다 저온 활성이 우수하게 나타났다. 황산화물의 피독실험 결과 본 연구에서는 최종적으로 Pt-Rh/Al2O3 촉매가 다른 촉매에 비하여 우수함을 보였다. 실험결과 Pt-Rh가 암모니아 전환공정에서 유용한 촉매라는 사실을 알 수 있다.
The ammonia decomposition reaction has been of increasing interest as a means of treating ammonia in flue gas in the presence of precious metal catalyst. Various catalysts, Pt-Rh/Al2O3, Pt-Rh/TiO2, Pt-Rh/ZrO2, Pt-Pd/Al2O3, Pd-Rh/Al2O3, Pd-Rh/TiO2, Pd-Rh/ZrO2, Pt-Pd-Rh/Al2O3, Pd/Ga-Al2O3, Rh/Ga-Al2O3, and Ru/Ga-Al2O3, were synthesized by using excess wet impregnation method. Using a homemade 1/4" reactor at 10,000~50,000 hr-1 of space velocity in the presence of precious metal catalyst ammonia decomposition reactions were carried out to investigate the catalyst activity. The inlet ammonia concentration was maintained at 2,000 ppm, with an air balance. Both T50 and T90, defined as the temperatures where 50% and 90% of ammonia, respectively, are converted, decreased significantly when alumina-supported catalysts were applied. In terms of catalytic performance on the ammonia conversion in the presence of hydrogen sulfide, Pt-Rh/Al2O3 catalyst showed no effect on the poisoning caused by hydrogen sulfide. These results indicate that platinum-rhodium bimetallic catalyst is a useful catalyst for ammonia decomposition.
[References]
  1. http://en.wikipedia.org/wiki/Kyoto_Protocol
  2. Jeon MK, Kang M, Korean J. Chem. Eng., 24(5), 774, 2007
  3. Chmielarz L, Kustrowski P, Dziembaj R, Cool P, Vansant EF, Catal. Today, 119(1-4), 181, 2007
  4. Yokozeki A, Shiflett MB, Appl. Energy, 84(12), 1258, 2007
  5. Jang HT, Park Y, Ko YS, Cha WS, Korean Chem. Eng. Res., 46(3), 498, 2008
  6. Kim NJ, Hirai M, Shoda M, J. Hazard. Mater., B72, 77, 2000
  7. Bosch H, Janssen F, Catal. Today, 2(4), 381, 1988
  8. Vajo JJ, Tsai W, Weinberg WH, J. Phys. Chem., 89(15), 3243, 1985
  9. Vavere1 A, Hansen RS, J. Catal., 69(1), 158, 1981
  10. Choudhary TV, Sivadinarayana C, Goodman DW, Chem. Eng. J., 93, 69, 2003
  11. Papapolymerou G, Bontozoglou V, J. Mol. Catal. A-Chem., 120(1-3), 165, 1997
  12. Rebrov EV, de Croon MHJM, Schouten JC, Chem. Eng. Res. Des., 81(7), 744, 2003
  13. Ozawa Y, Tochihara Y, Chem. Eng. Sci., 62(18-20), 5364, 2007
  14. Macgregor SA, Organometallics, 20(9), 1860, 2001
  15. Hannevold L, Nilsen O, Kjekshus A, Fjellvag H, Appl. Catal. A: Gen., 284(1-2), 163, 2005
  16. Lyubovsky MR, Barelko VV, J. Catal., 149(1), 23, 1994
  17. Handforth SL, Tilley JN, Ind. Eng. Chem., 26(12), 1287, 1934
  18. Okazaki S, Kumasaka M, Yoshida J, Kosaka K, Ind. Eng. Chem. Process Des. Dev., 20(2), 301, 1981