Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.4, 783-791, 2008
Li-X 제올라이트 흡착탑에서 H2/CO2, H2/CO, H2/CH4 혼합기체의 흡착 동특성
Adsorption Dynamics of H2/CO2, H2/CO and H2/CH4 Mixtures in Li-X Zeolite Bed
Li-X 제올라이트 흡착탑에서의 H2/CO2(80:20 vol%), H2/CO(90:10 vol%), H2/CH4(90:10 vol%)의 이성분계 기체의 흡착 동특성을 연구하였다. 각 계에서 공급유속(6.24~10.24 LPM), 흡착압력(6.1~10.1 bar)에 대한 영향을 살펴보았다. 동특성 실험 결과 파과시간은 공급유속이 적을수록, 흡착압력이 높을수록 증가하였으며 탑 내부 온도의 영향으로 tailing 현상이 발생하였다. Li-X 제올라이트 흡착탑에서 공급 유량과 압력의 확산계수에 의한 LDF식을 사용하여 예측하였다. 본 연구에서는 비등온과 비단열상태, Dual-site langmuir 등온식과 고려하여 해석하였으며 실험 데이터와 비교하였다.
The dynamic characteristics of adsorption using an adsorption bed packed with Li-X zeolite (UOP) were studied through the breakthrough experiments of H2/CH4 (90:10 vol%), H2/CO (90:10 vol%) and H2/CO2 (80:20 vol%) mixtures. Effects of feed flow rate (6.24~10.24 LPM) and adsorption pressure (6.1 bar~10.1 bar) in the Li-X zeolite bed with 2.7 cm of inside diameter and 80 cm of bed length were observed. The smaller feed rate or the higher operating pressure, resulted in the longer of the breakthrough time and the breakthrough curve have tailing due to temperature variance in the bed. The adsorption dynamics of the Li-X zeolite bed were predicted by using LDF model with feed flow and pressure dependent diffusivity. The prediction and experimental data were analyzed with a nonisothermal, nonadiabatic model, dual-site langmuir (DSL) isotherm
[References]
  1. Jang DG, Shin HS, Kim JN, Cho SH, Suh SS, HWAHAK KONGHAK, 37(6), 882, 1999
  2. Park JY, Yang SI, Choi DY, Jang SC, Lee CH, Choi DK, Korean Chem. Eng. Res., 46(1), 175, 2008
  3. Shin HS, Suh SS, HWAHAK KONGHAK, 36(6), 930, 1998
  4. Yang RT, Btterworth, Boston, MA, 1987
  5. Kim MB, Bae YS, Choi DK, Lee CH, Ind. Eng. Chem. Res., 45(14), 5050, 2006
  6. Serbezov A, Sotirchos SV, Sep. Purif. Technol., 31(2), 203, 2003
  7. Kang SH, Jeong BM, Choi HW, Ahn ES, Jang SC, Kim SH, Lee BK, Choi DK, Korean Chem. Eng. Res., 43(6), 728, 2005
  8. Jain S, Moharir AS, Li P, Wozny G, Sep. Purif. Technol., 33(1), 25, 2003
  9. Waldron WE, Sircar S, Adsorption, 6(2), 179, 2000
  10. Weist JR, Patent Application Publication, US 2006/0236863 A1
  11. Park JH, Kim JN, Cho SH, Kim JD, Yang RT, Chem. Eng. Sci., 53(23), 3951, 1998
  12. Lee CH, Yang JY, Ahn HW, AIChE J., 45(3), 535, 1999
  13. Aspen Custom Modeler : Modeling Language Reference Guide, Aspen Technology Inc,m Cambrige, MA, 2003
  14. Choi BU, Nam GM, Choi DK, Lee BK, Kim SH, Lee CH, Korean J. Chem. Eng., 21(4), 821, 2004
  15. Rutheven DM, Wiley, New York, 1984
  16. Doong SJ, Yang RT, AIChE J., 32, 397, 1986
  17. Yang J, Han S, Cho C, Lee H, HWAHAK KONGHAK, 33(1), 56, 1995
  18. Rutheven DM, Farooq S, Knaebel KS, Pressure Swing Adsorption, VCH publishers, New York, 1994
  19. Yun JH, Choi DK, Kim SH, AIChE J., 45(4), 751, 1999
  20. Nam GM, Jeong BM, Kang SH, Lee CH, Lee BK, Choi DK, Korean Chem. Eng. Res., 43(2), 249, 2005
  21. Lee JG, Lee JW, Kim MB, Cho CH, Lee CH, HWAHAK KONGHAK, 37(5), 706, 1999
  22. Malek A, Farooq SJ, J. Chem. Eng. Data, 41(1), 25, 1996
  23. Ahn ES, Jang SC, Choi DY, Kim SH, Choi DK, Korean Chem. Eng. Res., 44(5), 460, 2006
  24. Mathias PM, Kumar R, Moyer JD, Schork JM, Srinivasan SR, Auvil SR, Talu O, Ind. Eng. Chem. Res., 35(7), 2477, 1996
  25. Han S, Yang J, Lee CH, Lee H, HWAHAK KONGHAK, 34(3), 277, 1996
  26. Kim MB, Ryu YK, Lee CH, J. Chem. Eng. Data, 50(3), 951, 2005
  27. Ahn HW, Yang JY, Lee CH, Adsorption, 7(4), 339, 2001
  28. Park JH, Kim JN, Cho SH, AIChE J., 46(4), 790, 2000
  29. Yang JY, Lee CH, AIChE J., 44(6), 1325, 1998
  30. Jee JG, Kim MB, Lee CH, Ind. Eng. Chem. Res., 40(3), 868, 2001