Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.4, 777-782, 2008
초음파 중합에 의한 polypyrrole 나노입자를 함유하는 메조포러스 TiO2 박막의 합성
Synthesis of Mesoporous TiO2 Thin Films with Polypyrrole Nanoparticles by Ultrasonic-induced Polymerization
초음파 중합법을 이용하여 pyrrole을 중합시킴으로써 polypyrrole 나노입자를 합유하는 메조포러스 TiO2 박막을 합성하였다. 메조포러스 TiO2 박막을 만들기 위한 TiCl4-계면활성제 용액에 pyrrole을 넣어주고 초음파 중합시킴으로써 용액 내에 polypyrrole 나노입자들이 잘 분산된 형태로 만들어졌다. 이 용액을 이용하여 spin-coating과 열처리를 함으로써 polypyrrole 나노입자를 합유하는 메조포러스 TiO2 박막을 제조하였다. 열처리 후에도 기공 구조는 잘 유지되었으며, polypyrrole 나노입자들이 박막 내에 잘 분산되었다. 주형물질인 계면활성제의 종류와 pyrrole의 양을 조절함으로써, 합성된 박막의 기공 크기와 빛의 흡광도를 조절하였다.
Using ultrasonic-induced polymerization of pyrrole, mesoporous TiO2 thin film with polypyrrole nanoparticles was prepared. Polypyrrole nanoparticles were ultrasonically synthesized in the mother solution of mesoporous TiO2 before spin-coating. The polypyrrole particles were well dispersed in the solution. After spin-coating and calcinations process, the nanocomposite films have well-organized pore channels without pore-collapse, and polypyrrole nanoparticles are well dispersed in mesoporous TiO2 matrix. The pore size and light absorbance of the mesoporous nanocomposite thin films were controlled by using different template materials, and by using different amount of pyrrole monomer, respectively.
[References]
  1. Coakley KM, Liu YX, McGehee MD, Frindell KL, Stucky GD, Adv. Funct. Mater., 13(4), 301, 2003
  2. Coakley KM, Mcgehee MD, Appl. Phys. Lett., 83, 3380, 2003
  3. Gou YQ, Chen DY, Su ZX, Appl. Catal. A: Gen., 261(1), 15, 2004
  4. Jang KS, Kim HW, Cho SH, Kim JD, J. Phys. Chem. B, 110(47), 23678, 2006
  5. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Muller E, Liska P, Vlachoroulos N, Gratzel M, J. Am. Chem. Soc., 115, 6382, 1993
  6. Bach U, Lupo D, Comte P, Moser JE, Weissortgel F, Salbeck J, Spreitzer H, Gratzel M, Nature, 395, 583, 1998
  7. Salafsky JS, Phys. Rev. B, 59, 10885, 1999
  8. Breeze AJ, Schlesinger Z, Carter SA, Brock PJ, Phys. Rev. B, 64, 125205, 2001
  9. Salafsky JS, Lubberhuizen WH, Schroppp REI, Chem. Phys. Lett., 290, 297, 1998
  10. van Hal PA, Christiaans MPT, Wienk MM, Kroon JM, Janssen RAJ, J. Phys. Chem. B, 103(21), 4352, 1999
  11. Kresge CT, Leowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature, 359, 710, 1992
  12. Huo Q, Margolese DI, Ciesla U, Feng P, Gier TE, Sieger P, Nature, 368, 317, 1994
  13. Jang KS, Song MG, Cho SH, Kim JD, Chem. Commun., 13, 1514, 2004
  14. Grosso D, Soler-Illia GJDAA, Babonneau F, Sanchez C, Albouy PA, Brunet-Bruneau A, Balkenende AR, Adv. Mater., 13(14), 1085, 2001
  15. Crepaldi EL, Soler-Illia GJDA, Grosso D, Cagnol F, Ribot F, Sanchez C, J. Am. Chem. Soc., 125(32), 9770, 2003
  16. Mason TJ, Advance in Sonochemistry, vol. 1, JAI Press, London, 1990
  17. Mason TJ, Advance in Sonochemistry, vol. 2, JAI Press, London, 1991
  18. Kojima Y, Koda S, Nomura H, Ultrason. Sonochem., 8, 75, 2001
  19. Song MG, Kim JY, Cho SH, Kim JD, Langmuir, 18(16), 6110, 2002
  20. Kim TW, Ryoo R, Kruk M, Gierszal KP, Jaroniec M, Kamiya S, Terasaki O, J. Phys. Chem. B, 108(31), 11480, 2004
  21. Davidson RG, Turner TG, Synth. Met., 72, 121, 1995
  22. Carn F, Achard MF, Babot O, Deleuze H, Reculusa S, Backov R, J. Mater. Chem., 15, 3887, 2005