Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.4, 756-763, 2008
실험계획법을 활용한 은 나노 입자의 합성 및 최적화
Optimization of Silver Nanoparticles Synthesis through Design-of-Experiment Method
본 연구에서는 잉크젯용 전도성 금속 나노 잉크 개발을 목표로 통계적인 실험과 분석을 진행하여 재현성 있는 고품질의 은 나노 입자를 합성할 수 있는 기술을 개발하고자 하였다. 은 나노 입자는 상용 수계분산제 Daxad19를 이용한 용액 환원침전법을 통해 0.3M의 고농도로 합성되었다. 합성에 주요한 영향을 주는 6개의 인자를 선정한 후 실험 계획법(Design-of-experiment)을 통해 실험을 수행하였다. 합성된 은 입자는 SEM, TEM, UV-Visible 등의 분석법을 이용하여 입자크기 및 분포와 분산도 등을 측정하였으며 통계 프로그램인 Minitab으로 이를 최적화하였다. 통계적인 실험 계획 및 분석은 2차 부분요인분석법(2k-fractional factorial design)과 반응표면분석법인 박스-벤켄법(Box-Behnken design)으로 진행하였다. 이를 통한 합성 최적화로 평균입경 30 nm±10%를 가진 구형의 은 나노 입자를 합성하였다. 또한 본 연구에서는 실험 결과 해석을 통해 환원침전법에서의 입자크기 및 형상 제어의 방식도 실험적으로 밝혀냈다.
The aim of this work was to obtain uniform and well-dispersed spherical silver nanoparticles using statistical design-of-experiment methods. We performed the experiments using 2 k fractional factorial designs with respect to key factors of a general chemical reduction method. The nanoparticles prepared were characterized by SEM, TEM and UV-visible absorbance for particle size, distribution, aggregation and anisotropy. The data obtained were analyzed and optimized using a statistical software, Minitab. The design-of-experiment methods using quantified data enabled us to determine key factors and appreciate interactions between factors. The measured properties of nanoparticles were dominated not only by individual one or two main factors but also by interactions between factors. The appropriate combination of the factors produced small, narrow-distributed and non-aggregated silver nanoparticles of about 30 nm with approximately 10% standard deviation.
[References]
  1. Ryu BH, Choi Y, Park HS, Byun JH, Kong K, Lee JO, Chang H, Colloids Surf. A: Physicochem. Eng. Asp., 270-271, 345, 2005
  2. Sondi I, Goia DV, Matijevic E, J. Colloid Interface Sci., 260(1), 75, 2003
  3. Suber L, Sondi I, Matijevic E, Goia DV, J. Colloid Interface Sci., 288(2), 489, 2005
  4. Box GEP, Hunter WG, Hunter JS, Statistics for Experimenters-An Introduction to Design, Data Analysis, and Model Building, Wiley, New York, 1978
  5. Passos CG, Ribaski FS, Simon NM, Santos AA, Vaghetti JCP, Benvenutti EV, Lima EC, Int. J. Environ. Anal. Chem., 85, 475, 2005
  6. Cao G, Nanostrures & Nanomaterials-Synthesis, Properties & Applications, Imperial College Press, London, 2004
  7. Mulvaney P, Langmuir, 12(3), 788, 1996
  8. Sondi I, Goia DV, Matijevic E, J. Colloid Interface Sci., 260(1), 75, 2003
  9. Gutierrez M, Henglein A, J. Phys. Chem., 97, 11368, 1993
  10. Passos CG, Ribaski FS, Simon NM, dos Santos AA, Vaghetti JCP, Benvenutti EV, Lima EC, J. Colloid Interface Sci., 302(2), 396, 2006