Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.4, 707-713, 2008
Annular 유동층 반응기에서 최소유동화 속도 및 압력요동 특성
Characteristics of Minimum Fluidization Velocity and Pressure Fluctuations in Annular Fluidized Beds
직경이 0.102 m이고 높이가 2.0 m인 annular 유동층에서 최소유동화 속도 및 압력 요동 특성을 고찰하였다. 기체유속(UG), 고체 입자의 크기(dp) 그리고 유동층 온도가 최소유동화 속도 및 압력 요동 특성에 미치는 영향을 검토하였다. 본 연구 결과, annular 유동층 내의 압력 요동 자료로부터 구한 상관차원을 유동층 내부의 기체 및 유동 입자의 복합적인 거동을 정량적으로 나타내는 파라미터로 쓸 수 있었으며, 이 상관차원의 값은 기체의 유속, 유동 입자의 크기 그리고 반응기의 온도가 증가함에 따라 증가하였다. 유동층에서 유동입자의 최소유동화 속도를 유동층에서 압력 강하 및 압력 요동자료의 표준 편차를 사용하는 방법뿐만 아니라 압력 요동 자료의 상관차원을 이용하여서도 구할 수 있었으며 이들 각기 다른 방법으로 구한 최소 유동화 속도 값은 서로 매우 유사하였다. Annular 유동층에서 유동 입자의 최소유 동화 속도는 유동 입자의 크기가 증가할수록 증가하였으나 유동층의 온도가 증가함에 따라 감소하였다. 본 연구의 범위내에서 annular 유동층에서 최소 유동화 속도를 압력 요동 자료의 상관 차원과 무차원군의 함수로 나타낼 수 있었다.
Characteristics of minimum fluidization velocity and pressure fluctuations were investigated in an annular fluidized bed whose diameter was 0.102 m and 2.0 m in height. Effects of gas velocity, particle size and bed temperature on the minimum fluidization velocity and pressure fluctuations were examined. The values of minimum fluidization velocity obtained by means of three different methods were very similar each other. The correlation dimension could be a quantitative parameter for expression the resultant complex behavior of gas and solid mixture in the annular fluidized bed. The value of correlation dimension increased with increasing gas velocity, fluidized particle size and temperature in the bed. The minimum fluidization velocity could be determined by means of correlation dimension of pressure fluctuations as well as pressure drop in the bed and standard deviation of pressure fluctuations. The minimum fluidization velocity increased with increasing particle size but decreased with increasing bed temperature in annular fluidized beds. The minimum fluidization velocity was well correlated in therms of correlation dimension as well as operating variables within experimented conditions of this study.
[References]
  1. Sasse F, Emig G, Chem. Eng. Technol., 21(10), 777, 1998
  2. Lim KY, Jun HC, Lee HP, KIm HT, Yoo KO, J. Korean Ind. Eng. Chem., 11(8), 952, 2000
  3. Hirose T, Takai Y, Azuma N, Morioka Y, Ueno A, J. Mater. Res., 13(1), 77, 1998
  4. Sakata Y, Uddin A, Muto A, J. Anal. Appl. Pyrolysis, 51(1-2), 135, 1999
  5. Mertin J, Kirsten A, Predel M, Kaminsky W, J. Anal. Appl. Pyrolysis, 49(1-2), 87, 1999
  6. Lee CG, Kim JS, Song PS, Cho YJ, Kang Y, Choi MJ, HWAHAK KONGHAK, 40(4), 445, 2002
  7. Lee CG, Kang SH, Kim JS, Yun JS, Kang Y, Choi MJ, J. Korean Ind. Eng. Chem., 15(2), 188, 2004
  8. Son SM, Kim UK, Shin IS, Kang Y, Kang SH, Yoon BT, Choi MJ, The 4th International Symposium on Feedstock Recycling of Plastics and Other Polymeric Materials, September, Jeju, 2007
  9. Shin IS, Son SM, Kim UY, Kang Y, The 20th Symposium on Chemical Engineering Daejeon/Chungnam- Kyushu, December, Daejeon, 2007
  10. van den Bleek CA, Coppens MO, Schouten JC, Chem. Eng. Sci., 57(22-23), 4763, 2002
  11. Kang SH, Lee CG, Song PS, Kang Y, Kim SD, Kim SJ, Korean Chem. Eng. Res., 42(2), 241, 2004
  12. Karamavruc AI, Clark NN, Halow JS, Powder Technol., 84(3), 247, 1995
  13. Schouten JC, ven den Bleek CM, AIChE Symp. series, 88(289), 70, 1992
  14. Daw CS, Halow JS, Proc. 11th International Con. on Fluidized Bed Combustion, Montreal, April, 777-786, 1991
  15. Kunii D, Levenspiel O, Fluidization Engineering, Butterworth-Heinemann, 1991
  16. Chitester DC, Kornosky RM, Fan LS, Danko JP, Chem. Eng. Sci., 39(2), 253, 1984
  17. Kang SH, Kang Y, Han KH, Jin GT, “Effects of Pressure on the Minimum Fluidization Velocity and Bubble Properties in a Gas-solid Fluidized Bed", 10(3), 330, 2004
  18. Ergun S, Chem. Eng. Prog., 48(2), 89, 1952
  19. Wen CY, Yu YH, AIChE J., 12(3), 610, 1966