Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.4, 701-706, 2008
이송식 아크 플라즈마를 이용한 MLCC용 니켈 나노분말의 합성
Preparation of Nickel Nanopowder using the Transferred Arc Plasma for MLCCs
이송식 아크 열플라즈마를 이용하여 벌크상태의 니켈을 증발시킨 후 급속한 냉각과정을 거쳐 니켈 나노입자를 합성하였다. 플라즈마에 의해 질소가 용이하게 해리되어 용융된 니켈속으로 용해되고 과포화된 질소원자는 질소 분자로 가스화반응을 하여 반응열을 발산하는데 그 반응열에 의해 다량의 니켈증기가 생성된다. 생성된 니켈증기는 희석가스와 냉각가스를 이용하여 나노 입자 크기의 니켈분말로 제조된다. 희석가스 유량이 증가할수록 입자크기는 감소하였으며 그 분포경향이 작은 크기에서 좁게 나타났다. 평균입자크기는 희석가스 유량이 250 l/min에서 202 nm로 분석되었으며 모든 입자는 250 nm 이하 크기에서 존재함을 확인하였다.
Nano-sized nickel powders were prepared by evaporating the bulk nickel metarial using transferred arc thermal plasma. Nitrogen gases are easily dissociated to atomic nitrogen in thermal plasma and they are quickly dissolved in molten nickel. Super-saturated atomic nitrogen in molten nickel is recombined to nitrogen gas because of the relatively low temperature of nickel surface. Generally, the recombine reaction of atomic nitrogen is exothermic, so bulk nickel is quickly evaporated to nickel vapor due to the thermal energy of recombine reaction. The particle size of nickel powder was controlled by N2 used as the diluting gas. It was observed that as the diluting gas flow rate was increase, the particle size was decreased and the particle size distribution was narrowed. The average particle size at 250 l/min of the diluting gas was 202 nm analyzed by means of the particle size analyzer (PSA).
[References]
  1. Davis SC, Klabunde KJ, Chem. Rev., 82, 153, 1982
  2. Tseng WJ, Lin SY, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., A362, 160, 2006
  3. Oh SM, Park DW, J. Korean Ind. Eng. Chem., 16(3), 305, 2005
  4. Degen A, Macek J., Nanostruct. Mater., 12, 225, 1999
  5. Pollet M, Marinel S, Desgardin G, J. European Ceram. Soc., 24, 119, 2004
  6. Matteazzi P, Basset D, Miani E, Cair G, Nanostruct. Mater., 2, 217, 1993
  7. Lewis LN, Lewis N, J. Am. Chem. Soc., 108, 7228, 1986
  8. Hwa WJ, Lee SD, Lee YB, Park HC, Kim KH, Park SS, J. Korean Ind. Eng. Chem., 15(7), 715, 2004
  9. Terwiiliger CD, Chiang YM, Nanostruct. Mater., 4(6), 651, 1994
  10. Ying Z, Shengming J, Guanzhou Q, Min Y, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., B122, 222, 2005
  11. Lee JE, Oh SM, Park DW, Thin Solid Films, 457(1), 230, 2004
  12. Stopic S, Nedeljkovic J, Rakocevic Z, Uskokovic D, J. Mater. Res., 14, 3059, 1999
  13. Lee SH, Oh SM, Park DW, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., C27, 1286, 2006
  14. Oh SM, Park DW, Thermal Plasma Processing With Applications, Inha Univ. Publications, Korea, 2004
  15. Um MH, Lee CT, Kumazawa H, J. Mater. Sci. Lett., 16, 344, 1997
  16. FactSage, software program, version 5.3.1, GTT-Technologies, Germany
  17. Oh SM, Park DW, Thin Solid Films, 316(1-2), 189, 1998
  18. Holman JP, Thermodynamics, Tower Press, 1980
  19. Silbey RJ, Albrty RA, Pysical Chemistry, John Wiley & Sons, Inc., New York, NY, 2001
  20. Horikoshi G, Fundamentals of Vacuum Technology, University of Tokyo Press, Tokyo, 11-14, 1994
  21. KiJima K, Suzuki K, spring conference on ICPIG, July, Netherlands, 2005