Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.3, 529-534, 2008
생체복합체의 재생패각 합성전략: 참굴 패각의 변형에 따른 키틴 합성 및 패각재생
Biomineralization Strategy of Biocomposites on Regenerated Shell: Chitin Synthesis and Regenerated Shell Formtation by Deformed Oyster Shell
생체복합재료인 참굴 (Crassostrea gigas) 패각은 생성되는 형태에 따라 정상패각과 재생패각으로 구분되었다. 산과 알칼리를 이용한 탈 석회화과정 및 단백질제거반응을 통해 재생패각 내에서 얻어진 유기막이 키틴 특성을 가지고 있음을 FT-IR (Fourier transform infrared spectrometer)과 XRD (X-ray Diffractometer)를 통해 확인하였다. 불용성단백질의 함량은 정상패각이 재생패각과 비교하여 두배 이상 이었던 반면 수용성단백질 2차구조는 재생패각의 경우 random과 같은 불규칙구조가 많은 부분을 차지하고 있음을 확인할 수 있었다. 수용성단백질의 아미노산 조성과 단백질 2차구조 분석을 통해 재생패각의 탄산칼슘 합성전략을 분자수준에서 논의하였고 재생패각 형성과 관련된 생광물화 전략이 패각의 재료학적 특성에 미치는 결과로써 해석되었다.
The normal shell and the regenerated oyster shell, Crassostrea gigas, are separated according to the characteristics of inner shell morphology. To study characteristics of chitin obtained from the regenerated shell, chitin prepared by acid and alkali process is analyzed by FT-IR (Fourier transform infrared spectrometer) and XRD (X-ray Diffractometer). The content of insoluble protein in the normal shell was more than doubled as compared with that in the regenerated shell. A comparison of secondary structure of the normal shell and the regenerated shell revealed that the content of random of the regenerated shell was above 47%, indicating an amount in the structural unordered state. Through amino acid composition analysis and secondary protein structure of soluble protein isolated from the normal shell and the regenerated shell, it was found that there are differences in biomineralization strategy of the regenerated shell as compared to the normal shell. The relatively low hardness of the regenerated shell is caused by the change of amino acid composition and ordered secondary protein structure as compared to hardness of the normal shell.
[References]
  1. Willis J, Am. Zool., 39, 600, 1999
  2. Jeuniaux C, in; M. Florkin and E.H. Stotz (Ed.), Comprehensive Biochemistry (Chitinious Structure), Elsevier, New York, 595-631, 1971
  3. Weiner S, Traub W, FEBS Lett, 111, 311, 1980
  4. Fereidoon S, Janak K, Jeon YJ, Trends in Food Sci. & Tech., 10, 37, 1999
  5. Park JK, J. Chitin & Chitosan, 7, 1, 2002
  6. Shagemasa Y, Minami S, Biotech. Gen. Engi. Rev., 13, 1353, 1995
  7. Kifune K, Elsevier Science, London, 9-15, 1992
  8. Kifune K, Medical application of chitin/chitosan, Gibodang Press, Japan, 1994
  9. Hirano S, Nagamura K, Zhang M, Kim SK, Chung BG, Yoshikawa M, Midorikawa T, Carbohydr. Polym., 38, 293, 1999
  10. Jeuniaux C, in S. P. Colowick and N. O. Kaplan (Ed.) Methods in enzymology, Acad. Press, New York, 644-650, 1966
  11. Falini G, Weiner S, Addadi L, Calcified Tissue International, 72, 548, 2003
  12. Lee SW, Choi CS, Micron, 38, 58, 2007
  13. Kranz B, Burck J, Franzreb M, Koster R, Ulrich AS, J. Colloid Interface Sci., 316(2), 413, 2007
  14. Blake JA, Evans JW, The Veliger, 15, 235, 1973
  15. Kwon JK, Kong BG, Jang MK, J. Chitin & Chitosan, 7, 154, 2002
  16. Mann S, Biomineralization principles and concepts in bioinorganic materials chemistry, 1st ed., Oxford University Press, New York, 2001
  17. Lowenstam HA, Weiner S, On biomineralization, 1st ed., Oxford University Press, New York, 1989
  18. Davis JG, Oberholtzer JC, Burns FR, Greene MI, Science, 267(5200), 1031, 1995
  19. Bowen CE, Tang H, Comp. Biochem. Physiol., 115A(4), 269, 1996
  20. Badariotti F, Thuau R, Lelong C, Dubos MP, Favrel P, Dev. & Comp. Immunol., 31, 559, 2007
  21. Lee SW, Hong SM, Choi CS, Bull. Mar. Sci., 78, 309, 2006
  22. Addadi L, Weiner S, Proc. Natl. Acad. Sci. U.S.A., 82, 4110, 1985
  23. Medakovic D, Popovic S, Crzeta B, Plazonic M, Hrs-Brenko M, Mar. Biol., 129, 615, 1997
  24. Mount AS, Wheeler AP, Paradkar RP, Snider D, Science, 304, 297, 2004
  25. Cho SM, Ph.D. Dissertation-Gyeongsang National University, Korea, 2006