Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.3, 521-528, 2008
PVDF 중공사막 제조 및 벤치규모 기-액 접촉기를 이용한 SO2 흡수특성
Preparation of PVDF Hollow Fiber Membrane and Absorption of SO2 from Flue Gas Using Bench Scale Gas-Liquid Contactor
중공사막 접촉기에 적절한 PVDF 중공사막을 상전이 공정에 의하여 제조하였으며, SEM 과 기체투과도에 의하여 그 특성을 분석하였다. 벤치규모 중공사막 접촉기에서 SO2 제거를 위한 흡수제는 수산화나트륨 수용액을 사용하였다. 기체는 shell side, 액체는 lumen side로 흐르는 counter-current로 실험하였으며, 흡수제의 농도, 기체의 유속, 액가스비, 유입 SO2 농도에 따른 영향을 알아보았으며, 수학적 모델링에 의해 막 물질전달계수(km)를 측정하였다. 흡수제의 농도와 액기비가 증가함에 따라 기-액 계면에서 충분한 알칼리도가 제공되므로, 액체막 저항이 감소하며, 총괄물질전달 용량계수는 증가하였다. 기체유속이 증가함에 따라 기체막저항은 감소하게 되므로 총괄물질전달 용량계수는 증가하였다.
The micro-porous asymmetric PVDF hollow fiber membranes for gas-liquid contactor were prepared by the dry-jet wet phase inversion process and the characteristics of hollow fiber membranes were evaluated by the gas permeation method and scanning electron microscope. The chemical absorbent for removal of SO2 gas was sodium hydroxide at bench scale hollow fiber membrane contactor. The experiments were performed in a counter-current mode of operation with gas in the shell side and liquid in the fiber lumen of the module to examine the effect of various operating variables such as concentration of absorbent, gas flow rate, L/G ratio and concentration of inlet SO2 gas on the SO2 removal efficiency using PVDF hollow fiber membrane contactor. Membrane mass transfer coefficient(km) was calculated by mathematical modeling. The volumetric overall mass transfer coefficient increased with increasing the concentration of absorbent and L/G ratio. The increase of the absorbent concentration and L/G ratio not only provides more sufficient alkalinity but also decreases liquid phase resistance. The volumetric overall mass transfer coefficient increased with increasing gas flow rate due to decreasing the gas phase resistance.
[References]
  1. Gabelman A, Hwang ST, J. Membr. Sci., 159(1-2), 61, 1999
  2. Drioli E, Criscuoli A, Curcio E, Membrane contactors: Fundamentals, applications and potentialities, ELSEVIER B. V., 1-40, 2006
  3. Dindore VY, Ph.D. Universiteit Twente, Netherlands, 2003
  4. Nii S, Takeuchi H, Gas Sep. Purif., 8(2), 107, 1994
  5. Ozturk B, Al-Saffar HB, Hughes R, Chem. Eng. Commun., 177, 157, 2000
  6. Wang DL, Teo WK, Li K, Sep. Purif. Technol., 27(1), 33, 2002
  7. Li JL, Chen BH, Sep. Purif. Technol., 41(2), 109, 2005
  8. Tan XY, Tan SP, Teo WK, Li K, J. Membr. Sci., 271(1-2), 59, 2006
  9. Lee HK, Jo HD, Choi WK, Park HH, Lim CW, Lee YT, Desalination, 200(1-3), 604, 2006
  10. Park HH, Lim CW, Jo HD, Choi WK, Lee HK, Korean J. Chem. Eng., 24(4), 693, 2007
  11. Park HH, Deshwal BR, Kim IW, Lee HK, J. Membr. Sci., 319(1), 29, 2008
  12. Wang DL, Li K, Teo WK, J. Membr. Sci., 178(1-2), 13, 2000
  13. Yasuda H, Tsai JT, J. Appl. Polym. Sci., 18(3), 805, 1974
  14. Li K, Kong JF, Wang DL, Teo WK, AIChE J., 45(6), 1211, 1999
  15. Wang R, Chung TS, J. Membr. Sci., 188(1), 29, 2001
  16. Kong JF, Li K, J. Membr. Sci., 182(1-2), 271, 2001
  17. deMontigny D, Ph.D. The University of Regina, Canada, 2004
  18. deMontigny D, Tontiwachwuthikul P, Chakma A, Ind. Eng. Chem. Res., 44(15), 5726, 2005
  19. Kim YK, Song HO, Lee HK, Kim IW, Korean Chem. Eng. Res., 45(1), 81, 2007
  20. Mulder M, Basic principles of membrane technology, KLUWER ACADEMIC PUBLISHERS, London, 71-217, 2000
  21. Lancia A, Musmarra D, Pepe F, Ind. Eng. Chem. Res., 36(1), 197, 1997
  22. Lee HK, Deshwal BR, Yoo KS, Korean J. Chem. Eng., 22(2), 208, 2005
  23. Park HH, Deshwal BR, Jo HD, Choi WK, Kim IW, Lee HK, Desalination, in accepted, 2008