Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.3, 473-478, 2008
망간황화물을 이용한 NO의 선택적 촉매 환원
Selective Catalytic Reduction of NO on Manganese Sulfates
망간황화물이 NO의 선택적 촉매 환원에 미치는 영향을 반응성 및 속도론적평가와 TPR(Temperature Programmed Reduction), TGA분석을 통하여 고찰하였다. 망간산화물은 200 ℃ 이하의 저온에서 우수한 질소산화물 전환을 보였으나, 망간황화물의 경우 황화정도에 따라 질소산화물 전환은 고온으로 전이하였다. 또한 질소산화물 전환율도 황화정도에 따라 감소하였다. TPR 실험결과 망간산화물들은 160 ℃ 이하의 낮은 온도에서 환원이 시작되었으나 망간황화물은 280 ℃ 이상의 온도에서 환원이 시작되었다. TPR 실험을 통한 환원 시작온도는 촉매의SCR 시작 온도와 관련이 있는것으로 판단된다. 망간황화물의 활성화에너지는 다른 촉매에 비해 낮게 나타났으나 pre-exponential 상수 크기가 다른 촉매에 비해 1/1000배 만큼 작아 NO에 대한 활성이 낮게 나타났다. 천연망간광석은 함유된 다양한 금속산화물의 영향으로 순수한 망간산화물보다 낮은 온도에서 재생되었다.
In this experimental, selective catalytic reduction (SCR) of NO with NH3 over manganese sulfates and manganese sulfates was investigated with catalytic activity, kinetics, temperature programmed reduction (TPR) and TGA. Manganese oxides showed high catalytic activity for SCR at temperature below 200 ℃. In case of manganese sulfates, the temperature at which SCR of nitric oxide appears shifted to high temperature with sulfation degree, and the maximum catalytic efficiency decreased. The temperature of the onset of reduction for manganese oxides and manganese sulfates is about 160 ℃ and over 280 ℃, respectively. We suggest that the onset of reduction in TPR correlates with the onset of SCR activity. Because the pre-exponential factor of manganese sulfates is lower as 1/1000 times than that of other catalysts, catalytic activity of manganese sulfates for NO showed low. The reduction temperature of natural manganese ore which consists of various metal oxides showed lower than that of pure manganese oxides.
[References]
  1. Bosch H, Janssen F, Catal. Today, 2, 369, 1988
  2. Shin BS, Lim SY, Choung SJ, Korean J. Chem. Eng., 11(4), 254, 1994
  3. Park SY, Yoo KS, Lee JK, Park YK, Korean Chem. Eng. Res., 44(5), 540, 2006
  4. Yeh JT, Demski RJ, Strakey JP, Joubert JI, Environ. Prog., 4(4), 223, 1985
  5. Yeh JT, Demski RJ, Strakey JP, Joubert JI, Environmental Progress, 4(2), 44, 1987
  6. Fukuzawa H, Ishihara Y, CRIEPI report E279001, Japan, 1979
  7. Jeong SK, Park TS, Hong SC, J. Chem. Technol. Biotechnol., 76(10), 1080, 2001
  8. Jeong SK, Park TS, Doh DS, Hong SC, J. Chem. Eng. Jpn., 34(2), 166, 2001
  9. Kapteijn F, Vanlangeveld AD, Moulijn JA, Andreini A, Vuurman MA, Turek AM, Jehng JM, Wachs IE, J. Catal., 150(1), 94, 1994
  10. Barner HE, Mantell CL, I&EC Proc. Des. Dev., 7(2), 285, 1968
  11. Mah AD, U.S. Bureau of Mines RI5600, 1960
  12. Ingraham TR, Marier P, Trans Metall. Soc. AIME, 242, 2039, 1968
  13. Otsuka K, Tanaka K, Morikawa A, Bull. Chem. Soc. Jpn., 52, 2069, 1979
  14. Bjornbom EN, Druesne S, Zwinkels MF, Jaras SG, Ind. Eng. Chem. Res., 34(5), 1853, 1995
  15. Strohmeier BR, Hercules DM, J. Phys. Chem., 88, 4922, 1984