Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.1, 175-183, 2008
Li-X 제올라이트에서의 CO2/CO/CH4/H2 단일성분 및 혼합성분의 흡착평형
Pure and Binary Gases Adsorption Equilibria of CO2/CO/CH4/H2 on Li-X Zeolite
흡착제 Li-X 제올라이트(UOP)에서 CO2, CO, CH4, H2에 대한 단일성분 및 혼합성분의 흡착평형 실험을 정적부피법에 의해 수행하였다. 실험 데이터는 압력범위 0~20 bar와 온도범위 293.15 K, 303.15 K, 313.15 K에서 실시하였다. 각각 등온식의 파라미터들은 단일성분 실험을 통해 결정했고, 결정한 파라미터로 혼합성분의 흡착 평형을 예측하였으며 실험값과 비교하였다. Li-X 제올라이트에서의 H2/CO2, H2/CO, H2/CH4 혼합성분의 흡착평형 실험 결과는 extended langmuir 등온식, extended langmuir-freundlich(L-F) 등온식, dual-site langmuir(DSL) 등온식을 이용해 예측하였으며 실험값과 비교하였다. L-F 등온식은 다른 모델들에 비해 CH4와 H2에서 좋은 예측 결과를 보여주었다. 또한 DSL 등온 식은 CO2와 CO에서 좋은 예측 결과를 보여주었다.
Adsorption equilibria of the gases CO2, CO, CH4 and H2 and their binary mixtures on Li-X zeolite (UOP) were obtained by static volumetric method in the pressure range of 0 to 20 bar at temperatures of 293.15, 303.15, and 313.15 K. Using the parameter obtained from single-component adsorption isotherm. Multicomponent adsorption equilibra could be predicted and compared with experimental data. Extended Langmuir isotherm, Extended Langmuir-Freundlich isotherm (L-F) and dual-site Langmuir isotherm (DSL) were used to predict the experimental results for binary adsorption equilibria of H2/CO2, H2/CO, and H2/CH4 on Li-X Zeolite. Extended Langmuir-Freundlich isotherm predicted equilibria of CH4 and H2 better than any other isotherm. One the other hand DSL isotherm predicted equilibria of CO2 and CO very well.
[References]
  1. Yang RT, Btterworth, Boston, MA, 1987
  2. Myers AL, Prausnitz JM, AIChE J., 11(1), 121, 1965
  3. Markham EC, Benton AF, J. Am. Chem. Soc., 53(2), 497, 1931
  4. Reich R, Ziegler WT, Rogers KA, Ind. Eng. Chem. Process Des. Dev., 19(3), 336, 1980
  5. Grant RJ, Manes M, Ind. Eng. Chem. Fundam., 5(4), 490, 1966
  6. Moon H, Tien C, 3(161), 161, 1993
  7. Suwanayuen S, Danner RP, AIChE J., 26(1), 68, 1980
  8. Kaul, Bal K, Ind. Eng. Chem. Process Des. Dev., 23(4), 711, 1984
  9. Han S, Lee H, HWAHAK KONGHAK, 33(6), 720, 1995
  10. Rutheven DM, Wiley, New York, 1984
  11. Lee JS, Kim JH, Kim JT, Suh JK, Lee JM, Lee CH, J. Chem. Eng. Data, 47(5), 1237, 2002
  12. Krishna R, Paschek D, Sep. Purif. Technol., 21(1-2), 111, 2000
  13. Mathias PM, Kumar R, Moyer JD, Schork JM, Srinivasan SR, Auvil SR, Talu O, Ind. Eng. Chem. Res., 35(7), 2477, 1996
  14. Ahn ES, Jang SC, Choi DY, Kim SH, Choi DK, Korean Chem. Eng. Res., 44(5), 460, 2006
  15. Jeong BM, Kang SH, Choi HW, Lee CH, Lee BK, Choi DK, Korean Chem. Eng. Res., 43(3), 371, 2005
  16. Elliott JR, Lira CT, Prentice-Hall PTR
  17. Brunauer S, Deming LS, Deming WE, Teller EJ, J. Am. Chem. Soc., 62, 1726, 1940
  18. Nam GM, Jeong BM, Kang SH, Lee CH, Lee BK, Choi DK, Korean Chem. Eng. Res., 43(2), 249, 2005
  19. Hwang D, Oh M, Moon I, HWAHAK KONGHAK, 36(2), 151, 1998
  20. Kim WG, Yang J, Han S, Cho C, Lee CH, Lee H, Korean J. Chem. Eng., 12(5), 503, 1995