Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.1, 99-105, 2008
Cr O 및 Mn O 의 코팅에 의한 Core-Shell 구조의 BaTiO 분말 제조
Preparation of Core-Shell Structured BaTiO3 Powder Via Coating of Cr2O3 and Mn2O3
본 연구에서는 MLCC용 BaTiO3에 첨가되는 Cr2O3와 Mn2O3의 나노코팅에 의한 core-shell 구조의 BaTiO3 분말을 제조하였다. 예비실험을 통해서 KMnO4 및 K2Cr2O4 그리고 sulfur를 사용하는 최적의 액상반응조건이 확립되었다. 본 연구에서는 두 첨가제 분말을 합성하였고 동일한 반응조건으로 두 첨가제를 BaTiO3 분말표면에 코팅하였다. 코팅은 one-step과 two-step의 두 방법으로 구분하여 시행하였고 그 결과를 분석·비교하였다. 결론적으로 말해서, Cr2O3와 Mn2O3의 두 첨가제는 용이한 반응조건에서 높은 수율로 우수한 품질의 코팅막을 형성하므로써, 첨가제 함량과 코팅막 특성의 정밀한 조절이 용이함을 보여주었다.
Core-shell structured BaTiO3 powders were produced via nano-coating of Cr2O3 and Mn2O3 to barium titanate powder system for MLCCs. From preliminary experiments, the optimal solution reaction condition employing using KMnO4, K2Cr2O4 and sulfur was established. Not only powders of Cr2O3 and Mn2O3 were synthesized but also their coating on BaTiO3 powders were peformed under the same reaction condition. The coating was carried out in two ways, one-step and two-step, and its results were characterized for comparison. Conclusively speaking, two oxide additives were coated onto the BaTiO3 powder surface with high quality and excellent reaction yield even under mild condition, which indicates that the contents as well as the properties of additive shell layer can be precisely controlled with rather ease.
[References]
  1. Jiang S, Zhou D, Gong S, Guan X, Microelectron. Eng., 66(1), 896, 2003
  2. Thomas R, Dube DC, Kamalasanan MN, Chandra S, Thin Solid Films, 346(1-2), 212, 1999
  3. Canulescu S, Dinescu D, Epurescu G, Matei DG, Grigoriu C, Craciun F, Verardi P, Dinescu M, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 109(6), 160, 2004
  4. Lines ME, Glass M, Principles and Applications of Ferroelectric and Related Materials, Clarendon, Oxford, 1982
  5. Park Y, Kim YH, Kim HG, Mater. Lett., 28(9), 101, 1996
  6. Conley J, Antimicrobial Agents and Chemotherapy, 32(6), 1288, 1997
  7. Matijevic E, in Materials Science Monographs vol. 38A, High Tech Ceramics Part A, 441-458, 1990
  8. Gherardi P, Matijevic E, J. Colloid Interface Sci., 109(1), 57, 1986
  9. Kratohvil S, Matijevic E, Adv. Ceram. Mater., 118, 506, 1987
  10. Garg A, Matijevic E, Langmuir, 4(11), 38, 1988
  11. Kawahashi N, Matijevic E, J. Colloid Interface Sci., 138(9), 534, 1990
  12. Aiken B, Matijevic E, J. Colloid Interface Sci., 126(12), 645, 1988
  13. Ulhaq I, Matijevic E, J. Colloid Interface Sci., 192(1), 104, 1997
  14. Caruso F, Adv. Mater., 13, 1, 2001
  15. Wang X, Li YD, Mater. Chem. Phys., 82(2), 419, 2003
  16. Armstrong AR, Bruce PG, Nature, 381(6582), 499, 1996
  17. Lee WH, Su CY, J. Am. Ceram. Soc., 90(10), 3345, 2007
  18. Tsuzuki T, McCormick PG, Acta Mater., 48(6), 2795, 2000
  19. Onjia AE, Milonjic SK, Cokesa DJ, Comor M, Miljevic N, Mater. Res. Bull., 38(7), 1329, 2003
  20. Blesaa MA, Magaz G, Salfity JA, Weisz AD, Solid State Ion., 101(11), 1235, 1997