Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.1, 82-87, 2008
메탄의 부분산화를 이용한 이중 혼합금속산화물 촉매 반응시스템의 N2O 분해 특성 연구
N2O Decomposition Characteristics of Dual Bed Mixed Metal Oxide Catalytic System using Partial Oxidation of Methane
Methane의 부분산화에 의하여 일산화탄소를 발생시키고 이를 이용하여 온실가스로 알려져 있는 N2O를 분해시키기 위한 이중 촉매 반응시스템의 반응 특성을 살펴보았다. 일산화탄소를 발생시키기 위한 제1 반응기의 조건은 Co-Rh-Al (1/0.2/1) 촉매를 사용할 때 500 ℃의 온도에서 methane과 산소의 비율이 5:1이고 GHSV 8,000 h-1 일때 가장 적합하였다. 제1 반응기에서 methane을 부분산화시켜 얻은 혼합 가스를 사용하는 이중 반응시스템에서 제2 반응기에 촉매로 Co-Rh-Al(1/0.2/1)과 Co-Rh-Zr-Al(1/0.2/0.3/1)을 사용한 경우 Co-Rh-Al(1/0.2/1) 촉매를 사용한 single bed system 보다 250 ℃ 이하의 저온에서 우수한 분해성능을 나타내었다. 두 경우 모두 250 ℃ 이상의 온도에서는 N2O가 100% 분해되었다. 또한, 제2 반응기에서 N2O 분해성능은 NO의 존재 유무에 관계없이 산소의 농도가 증가할수록 감소함을 보여주었다. 다만 NO가 존재할 경우 산소의 농도가 10,000 ppm 이하일 때 100% 분해율을 보이며 그 이상일 경우 급격히 감소하였다.
N2O decomposition characteristics of dual bed mixed metal oxide catalytic system was investigated. The partial oxidation of methane at first reactor of dual bed catalytic system was performed over Co-Rh-Al (1/0.2/1) catalyst under the optimized condition of 8,000 h-1 GHSV, gas ratio (CH4:O2=5:1) at 500 ℃. In the dual bed system investigated herein, the second catalyst bed was employed for the N2O decomposition using product of partial oxidation of methane at first bed. An excellent N2O conversion activity even at lower temperature (<250 ℃) was obtained with Co-Rh-Al (1/0.2/1) or Co-Rh-Zr-Al (1/0.2/0.3/1) catalyst by combining Co-Rh-Al (1/0.2/1) hydrotalcite catalyst for the partial oxidation of methane in a dual-bed system. The N2O conversion activity is drastically reduced in the presence of oxygen in second bed of a dual-bed system over Co-Rh-Al (1/0.2/1) catalyst at 300 ℃.
[References]
  1. Reimer RA, Slaten CS, Seapan M, Lower MW, Tomlinson PE, Envrion, Progr., 13, 134, 1994
  2. Perez-Ramirez J, Overeijnder J, Kapteijn F, Moulijn JA, Appl. Catal. B: Environ., 23(1), 59, 1999
  3. Kapteijn F, Rodriguezmirasol J, Moulijn JA, Appl. Catal. B: Environ., 9(1-4), 25, 1996
  4. Kondratenko VA, Baerns M, J. Catal., 225(1), 37, 2004
  5. Wojtowica MA, Pels JR, Moulijn JA, Fuel Proc. Technol., 20, 149, 1993
  6. Meyer RJ, Pietsch E, Gemeins Handbuch der Anorganischen Chemie, Vol., 4, Verlag Chemie, Berlin, 558-597, 1936
  7. Dann TW, Schulz KH, Mann M, Collings M, Appl. Catal. B: Environ., 6(1), 1, 1995
  8. McCabe RW, Wong C, J. Catal., 121, 422, 1990
  9. Cho BK, Shanks BH, General Motors Research Laboratories Research Report PC-421, March, 1998
  10. Delahay G, Mauvezin M, Guzman-Vargas A, Catal. Commun., 3, 385, 2002
  11. Chang KS, Lee HJ, Park YS, Woo JW, Appl. Catal. A: Gen., 309(1), 129, 2006
  12. Chang KS, Song H, Park YS, Woo JW, Appl. Catal. A: Gen., 273(1-2), 223, 2004