Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.46, No.1, 23-36, 2008
고분자-점토 나노복합체 이해와 향후 연구 방향
Comprehending Polymer-Clay Nanocomposites and Their Future Works
고분자-점토 나노복합체는 소량의 점토를 사용하여 큰 기계적 물성향상을 나타내 많은 관심을 끌고 있는 분야이다. 층상 구조를 갖고 있는 점토를 고분자 matrix에 분산하는 과정으로 요약할 수 있는 고분자-점토 나노복합체 제조는 친수성 점토 표면을 조절하는 기술, 점토의 물리적 성질을 이용하는 무기재료에 관한 지식, 고분자 합성, 고분자 유변학, 고분자 용액 거동, 기계적 물성이 복합적으로 작용하는 계이다. 이러한 복잡성을 설명하기 위해, 이 총설에서 점토 종류와 그 특성을 설명하였다. 또한 점토 특성과 고분자-점토 나노복합체 제조 방법의 연관성에 대해 설명하고, 제조된 복합체의 구조 분석과 방법에 대해 설명하였다. 그리고 복합체의 특징적인 물성을 분류한 후 그 물성과 복합체의 구조를 연관하여 살펴보았다. 마지막으로 최근의 연구 경향과 향후 연구 경향을 제시하였다.
Polymer-clay nanocomposites, a novel organic-inorganic hybrid, attract much attention from both scientific fields and engineering fields due to their balanced improvements in mechanical properties as well as diffusion behaviors, including flame-retarding and barrier properties, with small amounts of clay. Preparation of polymer-clay nanocomposites, summarized as a process for uniform dispersion of hydrophilic layered clays in hydrophobic polymer matrixes, includes several technologies and scientific phenomena, such as surface-modifications of clay layers, physical properties of clays in liquids and dried states, polymer synthesis, polymer rheology, behaviors of polymer solutions/or monomers in the confined geometry, mechanical properties of polymers and clays. To comprehend complicated physical/chemical phenomena involved in the fabrication of nanocomposites, we reviewed physical properties of clays, structures of clays in nanocomposites, characterization of nanocomposites, the relation between morphology and physical property of nanocomposites, surveyed recent research trends, and then suggested a few strategies or methods for fabrication of nanocomposites reflecting future research directions.
[References]
  1. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O, J. Polym. Sci. A: Polym. Chem., 31(4), 983, 1993
  2. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O, J. Polym. Sci. A: Polym. Chem., 31(7), 1755, 1993
  3. Greenland DJ, J. Colloid Sci., 18(7), 647, 1963
  4. Friedlander HZ, Frink CR, J. Polym. Sci. B: Polym. Phys., 2(4), 475, 1964
  5. Blumstein A, J. Polym. Sci. A: Polym. Chem., 3(7), 2653, 1965
  6. Blumstein A, J. Polym. Sci. A: Polym. Chem., 3(7), 2665, 1965
  7. Blumstein A, Billmeyer FW, J. Polym. Sci., Part A-2: Polym. Phys., 4(3), 465, 1966
  8. Blumstein A, Malhotra SL, Watterson AC, J. Polym. Sci., Part A-2: Polym. Phys., 8(9), 1599, 1970
  9. Blumstein A, Parikh KK, Malhotra SL, J. Polym. Sci., Part A-2: Polym. Phys., 9(9), 1681, 1971
  10. Malhotra SL, Parikh KK, Blumstein A, J. Colloid Interface Sci., 41(2), 318, 1972
  11. Murray HH, Appl. Clay Sci., 17(5-6), 207, 2000
  12. Pinnavaia TJ, Science, 220(4595), 365, 1983
  13. Giese RF, van Oss C, J. Colloid and Surface Properties of Clays and Related Minerals, Marcel Dekker, New York, 2002
  14. Vaia RA, Teukolsky RK, Giannelis EP, Chem. Mater., 6(7), 1017, 1994
  15. Wang KH, Choi MH, Koo CM, Choi YS, Chung IJ, Polymer, 42(24), 9819, 2001
  16. Choi YS, Ham HT, Chung IJ, Chem. Mater., 16(13), 2522, 2004
  17. Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O, J. Polym. Sci. A: Polym. Chem., 31(10), 2493, 1993
  18. Carrado KA, Xu L, Chem. Mater., 10(5), 1440, 1998
  19. Carrado KA, Appl. Clay Sci., 17(1-2), 1, 2000
  20. Dong WF, Liu YQ, Zhang XH, Gao JM, Huang F, Song ZH, Tan BH, Qiao JL, Macromolecules, 38(11), 4551, 2005
  21. Bragancua FC, Valadares LF, Leite CAP, Galembeck F, Chem. Mater., 19(13), 3334, 2007
  22. Rao YQ, Pochan JM, Macromolecules, 40(2), 290, 2007
  23. Vaia RA, Giannelis EP, Macromolecules, 30(25), 8000, 1997
  24. Koo CM, Kim SO, Chung IJ, Macromolecules, 36(8), 2748, 2003
  25. Wang KH, Choi MH, Koo CM, Xu MZ, Chung IJ, Jang MC, Choi SW, Song HH, J. Polym. Sci. B: Polym. Phys., 40(14), 1454, 2002
  26. Wang KH, Xu M, Choi YS, Chung IJ, Polym. Bull., 46(6), 499, 2001
  27. Lan T, Pinnavaia TJ, Chem. Mater., 6, 2216, 1994
  28. Choi YS, Wang KH, Xu M, Chung IJ, Chem. Mater., 14(7), 2936, 2002
  29. Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O, J. Polym. Sci. A: Polym. Chem., 31(10), 2493, 1993
  30. Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips SH, Chem. Mater., 12(7), 1866, 2000
  31. Zanetti M, Camino G, Canavese D, Morgan AB, Lamelas FJ, Wilkie CA, Chem. Mater., 14(1), 189, 2002
  32. Darder M, Aranda P, Ruiz-Hitzky E, Adv. Mater., 19(10), 1309, 2007
  33. Mehta G, Kiel MJ, Lee JW, Kotov N, Linderman JJ, Takayama S, Adv. Funct. Mater., 17(15), 2701, 2007
  34. Rao YQ, Polymer, 48(18), 5369, 2007
  35. Lai MC, Chang KC, Yeh JM, Liou SJ, Hsieh MF, Chang HS, Eur. Polym. J., 43(10), 4219, 2007
  36. Kim TK, Kang M, Choi YS, Kim HK, Lee W, Chang H, Seung D, J. Power Sources, 165(1), 1, 2007
  37. Chuang SW, Hsu SLC, Hsu CL, J. Power Sources, 168(1), 172, 2007
  38. Choi MH, Chung IJ, Lee JD, Chem. Mater., 12(10), 2977, 2000
  39. Byun HY, Choi MH, Chung IJ, Chem. Mater., 13(11), 4221, 2001
  40. Bockstaller MR, Mickiewicz RA, Thomas EL, Adv. Mater., 17(11), 1331, 2005
  41. Huang WY, Han CD, Macromolecules, 39(1), 257, 2006