Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.45, No.4, 410-413, 2007
불균일계 올레핀 중합촉매내 내부전자공여체가 선형 저밀도폴리에틸렌 분자구조에 미치는 영향
The Influence of the Internal Donors in the Heterogenous Olefin Polymerization Catalyst on the Molecular Structure of Linear Low Density Polyethylene
불균일계 중합촉매내 내부전자공여체(ID)의 존재 유무와 종류가 에틸렌과 1-부텐 간의 공중합에서 얻어지는 공중합물에 미치는 영향에 대하여 살펴보았다. 실리카 담지 TiCl4 촉매를 실리카 담지체에 ethylaluminium dichloride, magnesium alkyl, 2-ethyl-1-hexanol, TiCl4와 여러 종류의 ID 등을 이용하여 제조하였으며 이 때 ID와 Ti의 몰비를 0.5로 고정하였다. ID는 ethylbenzoate(EB), diisobuylphthalate(DIBP), dioctylphthalate(DOP)을 사용하였다. ID가 촉매 내에 존재하는 경우 Ti(+3)의 함량비가 증가하였다. 공중합 활성은 EB를 TiCl4 반응 후에 투입한 촉매가 가장 높았으며 그 외의 ID가 존재하는 촉매는 활성이 감소하는 현상을 보였다. Xylene soluble(XS) 측정값은 ID가 존재하는 모든 중합촉매가 ID가 없는 경우 보다 50% 이상 감소하였으며 Crystaf 분석 결과 DIBP가 존재하는 촉매가 상대적으로 균일한 화학조성분포를 보였다. 이는 ID가 분균일한 촉매활성점을 보다 균일하게 만드는 역할에서 기인한 것으로 보이며 입체규칙성을 갖는 활성점을 만들거나 비입체규칙성 활성점을 blocking하는 역할 때문인 것으로 설명할 수 있다.
The effect of internal donor(ID) in the heterogeneous Ziegler-Natta catalyst on the ethylene-1-butene copolymerization and the molecular structure of the resulting copolymer was investigated. SiO2-supported TiCl4 catalysts having ID/Ti molar ratio of 0.5 were prepared with ethyaluminium dichloride, magnesium alkyl, 2-ethyl-1-hexanol and TiCl4. Three different IDs were employed such as ethylbenzoate(EB), diisobuylphthalate(DIBP) and dioctylphthalate(DOP). ID-added catalyst showed a larger fraction of Ti(+3) compared to that of no ID-added catalyst. The EB-added catalyst showed the highest activity in copolymerization. Xylene soluble value decreased by more than 50 % with ID-added catalysts compared to that of no ID-added catalyst. Crystaf analysis showed the chemical compositional distribution of PE copolymer was improved in the case of DIBP-added catalyst significantly. It could be explained that the presence of ID could make more even active sites and block the non-stereospecific active sites.
[References]
  1. Ko YS, Han TK, Sadatoshi H, Woo SI, J. Polym. Chem., Part A: Polym. Chem., 36(2), 291, 1998
  2. Ko YS, Han TK, Park JW, Woo SI, J. Polym. Chem., Part A: Polym. Chem., 35(13), 2769, 1997
  3. Perin SGM, Severn JR, Koning CE, Chadwick JC, Macromol. Chem. Phys., 207(1), 50, 2006
  4. Chu KJ, Soares JBP, Penlidis A, Ihm SK, Macromol. Chem. Phys., 200(6), 1298, 1999
  5. Jie K, Fan XD, Xie YC, Qiao WQ, J. Appl. Polym. Sci., 94(4), 1710, 2004
  6. Kakugo M, Miyatake T, Mizunuma K, Macromolecules, 24(7), 1469, 1999
  7. Kakugo M, Miyatake T, Mizunuma K, Kawai Y, Macromolecules, 21(8), 2309, 1988
  8. Soga K, Uozumi T, Park JR, Makromol. Chem., 191, 2853, 1990
  9. Soga K, Shiono T, Doi Y, Polym. Bull., 10(3-4), 168, 1983
  10. Ko YS, Catal. Today, submitted, 2007
  11. Kissin YV, Mirabella FM, Meverden CC, J. Polym. Sci. A: Polym. Chem., 43(19), 4351, 2005
  12. Thomas G, Johanssen S, Pesonen K, Waldvogel P, Lindgren D, Eur. Polym. J., 38(1), 121, 2002
  13. Nowlin TE, Kissin YV, Wagner KP, J. Polym. Sci. A: Polym. Chem., 26(3), 755, 1988
  14. Soares JBP, Monrabal B, Nieto J, Blanco J, Macromol. Chem. Phys., 199(9), 1917, 1998
  15. Chien JCW, Weber S, Hu Y, J. Polym. Sci. A: Polym. Chem., 20(8), 2019, 1982