Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.45, No.4, 340-344, 2007
MCM-41 촉매 상에서 일본 낙엽송으로부터 생성된 바이오 오일의 접촉 개질 반응
Catalytic Upgrading of Bio-oil Produced from Japanese Larch over MCM-41
MCM-41 촉매를 이용하여 일본 낙엽송의 열분해 바이오 오일의 촉매 개질 반응을 수행하였다. MCM-41 촉매는 바이오 오일의 불안정성의 원인중 하나인 산소를 H2O, CO, CO2의 형태로 제거하여 개질 전의 오일보다 더 안정한 오일을 생성하였다. MCM-41 촉매는 무촉매 반응에 비해 경제적 가치가 높은 페놀류 화합물의 생성량을 증가시켰다. 특히 Si-MCM-41 촉매에 비해 산점의 양이 많은 Al-MCM-41의 경우 촉매 활성이 더 우수하였다. 또한 촉매와 일본 낙엽송을 직접 혼합한 것보다, 바이오 오일이 촉매층을 통과했을 때 더 나은 개질 결과를 얻을 수 있었다.
Catalytic upgrading of pyrolytic bio-oil produced from Japanes Larch was carried out over MCM-41 catalyst. Oil with enhanced stability was produced by the MCM-41 catalyst due to transform oxygen known as a main cause for the instability of bio-oil into H2O, CO and CO2. In addition, the MCM-41 catalyst produced the larger amount of phenolic compounds in the pyrolytic bio-oil product compared with that in the bio-oil produced without catalyst. Especially, the catalytic activity of Al-MCM-41 for the bio-oil upgrading was higher than that of Si-MCM-41 because Al-MCM-41 has the larger amount of acid sites. Also, the better reforming result was obtained when pyrolytic bio-oil vapor passed through catalytic layer rather than Japanese Larch was mixed with catalyst directly.
[References]
  1. Klass DL, Biomass for Renewable Energy, Fuels and Chemicals, Academic Press, San Diego, 1998
  2. Demirbas A, Energy Conv. Manag., 42(11), 1357, 2001
  3. McKendry P, Bioresour. Technol., 83(1), 37, 2002
  4. EUREC Agency. The future for renewable energy, prospects and directions. James and James Science Publishers, London, 1996
  5. Ahuja P, Singh PC, Upadhyay SN, Kumar S, Indian J. Chem. Technol., 3(6), 306, 1996
  6. Fisher T, Hajaligol M, Waymack B, Kellogg K, J. Anal. Appl. Pyrolysis, 62(2), 331, 2002
  7. Di Blasi C, Signorelli G, Di Russo C, Rea G, Ind. Eng. Chem. Res., 38(6), 2216, 1999
  8. Caballero JA, Conesa JA, Font R, Marcilla A, J. Anal. Appl. Pyrolysis, 42(2), 159, 1997
  9. Zanzi R, Sjostrom K, Bjornbom E, Fuel, 75(5), 545, 1996
  10. Savova D, Apak E, Ekinci E, Yardim F, Petrov N, Budinova T, Bioenergy, 21(2), 133, 2001
  11. Meier D, Faix O, Bioresour. Technol., 68(1), 71, 1999
  12. Bridgwater AV, Bridge SA, in: A. V. Bridgwater G. Grassi, (Eds.), A Review of Biomass Pyrolysis and Pyrolysis Technologies: Biomass Pyrolysis Liquids, Upgrading and Utilization, London, Elsevier Applied Science, 227-242, 1991
  13. Vitolo S, Bresci B, Seggiani M, Gallo MG, Fuel, 80(1), 17, 2001
  14. Ryoo R, Kim JM, Chem. Commun., 1997(22), 2225, 1997
  15. Oasmaa A, Leppamaki E, Koponen P, Levander J, Tapola E, Physical characterization of biomass-based pyrolysis liquids-Application of standard fuel oil analyses, VTT Publications, ESPOO, 1997
  16. Myung SY, Ph. D. Thesis, The Univ. of Seoul, Seoul, 2005
  17. Jeon JK, Park YK, Kim S, Kim SS, Yim JH, Sohn JM, J. Ind. Eng. Chem., 13(2), 176, 2007
  18. Park HJ, Park YK, Kim JS, Jeon JK, Yoo KS, Yim JH, Jung J, Sohn JM, Stud. Surf. Sci. Catal., 159, 553, 2006