Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.45, No.4, 328-334, 2007
솔-젤법을 이용한 2-propanol 탈수소화 반응 Pt 촉매의 제조
Preparation of Pt Catalysts for 2-propanol Dehydrogenation using Sol-gel Method
2-propanol/acetone/hydrogen 계 화학반응 열펌프 시스템은 발전소의 폐열 등을 이용하기 위한 가장 적합한 반응계로 알려져 있다. 솔-젤법을 이용하여 2-propanol 탈수소화 반응용 5 wt% Pt-alumina 촉매를 다양한 형태로 제조하여 각각의 특성을 알아보았고 각각의 반응성을 비교하였다. Pt-alumina xerogel 촉매는 기존의 담지촉매보다 우수한 반응성을 보였으며 또한 지속성도 우수한 것으로 나타났다. 또한, Pt-alumina aerogel 촉매가 반응속도 면에서 가장 우수한 결과를 보였다. Aerogel 촉매의 지속성을 유지시키기 위해서는 충분한 시간의 숙성과정이 필요한 것으로 나타났으며 이 과정을 통해서 높은 반응성은 물론 안정적인 지속성도 얻을 수 있었다. Pt-alumina aerogel 촉매의 가장 큰 특징은 높은 반응성은 물론, 일반적으로 반응전에 필수적으로 거쳐야하는 고온의 열처리가 전혀 필요 없다는 것으로서 이는 경제적으로 큰 이점을 가진다. 또한 alumina xerogel에 초기함침법으로 Pt를 담지시킨 촉매는 기계적 강도 및 반응성 면에서 우수한 성능을 보였으며 이를 통하여 alumina xerogel은 금속촉매의 지지체로서도 이용할 수 있다는 사실을 알 수 있었다.
Chemical heat pump system of 2-propanol/acetone/hydrogen is most suitable to the recovery of waste heat of power plant. various types of 5 wt% Pt-alumina catalysts were prepared for 2-propanol dehydrogenation using sol-gel method. The characteristics and the dehydrogenation reaction rate of each catalyst were investigated. Pt-alumina xerogel catalyst has excellent reaction rate and good durability in comparison with the existing alumina supported Pt catalysts. Pt-alumina aerogel catalyst had the highest reaction rate in all prepared catalysts, but sufficient aging time was necessary to maintain its reaction rate. A potential advantage of the aerogel catalyst is the fact that the high temperature heat treatment is not required. Without heat treatment or with low temperature heat treatment, the Pt-alumina aerogel catalyst has excellent reaction rate as well as durability and this gives us the economic advantage. Alumina xerogel supported Pt catalyst prepared by incipient wetness method showed good reaction rate, and had good mechanical strength. Blank alumina xerogel prepared by sol-gel method can be used for the support of metal catalysts.
[References]
  1. Han JH, Cho KW, Lee KH, Lee HK, Korean J. Chem. Eng., 17(2), 248, 2000
  2. Han JH, Cho KW, Lee KH, HWAHAK KONGHAK, 34(6), 757, 1996
  3. KlinSoda I, Piumsomboon P, Energy Conv. Manag., 48, 1200, 2007
  4. Karaca F, Kincay O, Bolat E, Appl. Therm. Eng., 22(16), 1789, 2002
  5. Ito E, Yamashita S, Hagiwara S, Saito Y, Chem. Lett., 20, 351, 1991
  6. Kim TG, Lee H, Chung Y, Na BK, Song HK, HWAHAK KONGHAK, 33(5), 598, 1995
  7. Lee H, Na BK, Chung Y, Song HK, Proceeding of APCChE '96, 3, 1247, 1996
  8. Zou WQ, Gonzalez RD, J. Catal., 152(2), 291, 1995
  9. Hench LL, West JK, Chem. Rev., 90, 33, 1990
  10. Brinker CJ, Scherrer GW, Academin Press, San Diego, CA, 1990
  11. Pajonk GM, Appl. Catal., 72(2), 217, 1991
  12. Schneider M, Baiker A, Catal. Rev.-Sci. Eng., 37(4), 515, 1995
  13. Campbell LK, Na BK, Ko EI, Chem. Mater., 4(6), 1329, 1992
  14. Amiridis MD, Na BK, Ko EI, Ozkan, U.S. et al Ed., ACS Symposium Series 587, ACS, Washington, DC, 32-36, 1995
  15. Balakrishnan K, Gonzalez RD, J. Catal., 144(2), 395, 1993