Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.45, No.3, 264-268, 2007
마이크론 금속섬유 필터에서 탄소나노튜브의 직접 성장에 의한 나노구조체 합성 및 여과성능
Synthesis of Nanostructures by Direct Growth of Carbon Nanotubes on Micron-sized Metal Fiber Filter and its Filtration Performance
마이크론 금속섬유 필터 표면상에 탄소나노튜브를 직접 합성 성장함으로써 마이크론 필터의 성능을 향상할 수 있었다. 탄소나노튜브는 합성조건에 따라 마이크론 섬유 주위를 덮는 덤불 나노구조체 또는 섬유 사이를 연결하는 망 형상의 나노구조체로 성장하였다. 탄소나노튜브가 성장한 금속필터와 탄소나노튜브가 성장하지 않은 금속필터의 여과성능을 측정하여 비교한 결과, 차압의 변화는 미미하나 여과효율은 더욱 향상되었고, 이는 탄소나노튜브가 오염 나노입자를 잡는 트랩으로 작용하였기 때문이다.
The filtration performance of micron-sized metal fibrous filter was improved by synthesizing carbon nanotubes grown on the surface of metal fibers. The carbon nanotubes are grown with bush-like nanostructures covered around the micron-fibers or web-like nanostructures crossing between the fibers at different synthetic conditions. Filtration efficiency of CNT-metal-filter was measured and compared with the efficiency of the raw metal filter without CNTs. The developed CNT-metal-filter has higher filtration efficiency without significant difference in pressure drop compared with the conventional metal filter, which is because the carbon nanotubes function as the trap of pollutant nanoparticles.
[References]
  1. Park C, Engel ES, Crowe A, Gilbert TR, Rodriguez NM, Langmuir, 16(21), 8050, 2000
  2. Walters DA, Casavant MJ, Qin XC, Huffman CB, Boul PJ, Ericson LM, Haroz EH, O’Connells MJ, Smith K, Colbert DT, Smalley RE, Chem. Phys. Lett., 338(1), 14, 2001
  3. Vander Wal RL, Hall LJ, Carbon, 41(4), 659, 2003
  4. Johnson DF, Craft BJ, Jaffe SM, J. Nanopart. Res., 3(1), 63, 2001
  5. Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM, Nat. Mater., 3(9), 610, 2004
  6. Shimoda H, Fleming L, Horton K, Zhou O, Physica B, 323(1), 135, 2002
  7. Hinds WC, JOHN WILEY & SONS, 1982
  8. Graham K, Ouyang M, Raether T, Grafe T, McDonald B, Knauf P, Proceedings of the American Filtration and Separation Society 16, paper 1 session 14, 2002
  9. Park SJ, Lee DG, Korean Chem. Eng. Res., 44(6), 563, 2006
  10. Friedlander SK, OXFORD UNIVERSITY PRESS, 2000
  11. Brown RC, PERGAMON PRESS, 1993