Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.45, No.2, 183-189, 2007
유전체 장벽 방전을 이용한 원소수은의 산화특성
Oxidation of Elemental Mercury using Dielectric Barrier Discharge Process
대표적인 수은 발생원인 도시폐기물 소각로와 화력 발전소 등지에서 배출되는 원소수은(Hg0)은 산화수은(Hg2+) 및 입자상 수은(Hgp)과 달리 기존의 대기오염 방지시설로 제거하기 난해한 편이다. 그로 인해 원소수은의 효율적 제거에 대한 많은 연구가 진행중이며, 이 연구에서는 저온 플라즈마(non-thermal plasma)의 하나인 유전체 장벽 방전(dielectric barrier discharge: DBD) 공정을 이용하여 원소수은 산화에 관한 실험을 수행하였다. 실험 결과, 공기 상의 DBD 공정에서는 생성되는 산소 원자와 오존에 의해서 원소수은이 산화수은으로 전환됨을 알 수 있었으며, 원소수은의 산화율을 결정하는 주된 변수는 반응기에 주입되는 에너지 밀도임을 확인할 수 있었다.
We have investigated the oxidation of gas phase elemental mercury using dielectric barrier discharge (DBD). In the DBD process, active species such as O3, OH, O and HO2 are generated by collisions between electrons and gas molecules. Search active species convert elemental mercury into mercury oxide which is deposited into the wall of DBD reactor because of its low vapor pressure. The oxidation efficiency of elemental mercury has been decreased from 60 to 30% by increasing the initial concentration of the elemental mercury from 72 to 655 μg/Nm3. The gas retention time at the DBD reactor has showed the little effect on the oxidation efficiency. The more oxygen concentration has induced the more oxidation of elemental mercury, whereas there has been no appreciable oxidation within pure N2 discharge. It has indicated that oxygen atom and ozone, generated in air condition determine the oxidation of elemental mercury.
[References]
  1. Annau Z, Cuom V, Toxicology, 49, 219, 1998
  2. Carpi A, Water Air Soil Pollut., 98, 241, 1997
  3. Schroeder WH, Munthe J, Atmos. Environ., 32(5), 809, 1998
  4. Otani Y, Kanaoka C, Usui C, Matsui S, Emi H, Environ. Sci. Technol., 20, 735, 1986
  5. Lee SJ, Seo YC, Jurng JS, Lee TG, Atmos. Environ., 38, 4887, 2004
  6. Lee TG, Biswas P, Hedrick E, Ind. Eng. Chem. Res., 43(6), 1411, 2004
  7. Granite EJ, Pennline HW, Ind. Eng. Chem. Res., 41(22), 5470, 2002
  8. Yoon YI, Choi WK, Lee SH, Lee HK, Prospect. Ind. Chem., 8(1), 12, 2005
  9. Clements JS, Mizuno A, Finney WC, Davis RH, IEEE Trans. Ind. Appl., 25(1), 62, 1989
  10. Urashima K, Chang JS, IEEE. Trans. Dielec. Elec. Insul., 7(5), 602, 2001
  11. Lee YH, Jung WS, Choi YR, Oh JS, Jang SD, Son YG, Cho MH, Nam kung W, Koh DJ, Mok YS, Chung JW, Environ. Sci. Technol., 37(7), 2563, 2003
  12. Futamura S, Einaga H, Zhang A, IEEE Trans. Ind. Appl., 37, 978, 2001
  13. Liang X, Looy PC, Jayaram S, Berezin AAMS, Chang JS, IEEE Trans. Ind. Appl., 38(1), 69, 2002
  14. Masuda S, Wu Y, Urabe T, Ono Y, Proc. Of 3rd Int. Conf. on Electrostatic Precipitation, Abano, Italy, October 667-676, 1987
  15. Lee YH, Chung JW, Choi YR, Chung JS, Cho MH, Namkung W, Plasma Chem. Plasma Process., 24(2), 137, 2004
  16. Morita M, Yoshinaga J, Edmonds JS, Pure Appl. Chem., 70(8), 1585, 1998
  17. Pitoniak E, Wu CY, Mazyck DW, Powers KW, Sigmund W, Environ. Sci. Technol., 39(5), 1269, 2005
  18. Okabe H, Photochemistry of Small Molecules, A Wiley-Interscience Publication, 1978
  19. Rice RG, Netzer A, Handbook of Ozone Technology and applications. Vol. 1 ANN ARBOR SCIENCE, 1982
  20. Pal B, Ariya PA, Phys. Chem. Chem. Phys., 6, 572, 2004
  21. Lin CJ, Pehkonen SO, Atmos. Environ., 33, 2067, 1999
  22. Calvert JG, Lindberg SE, Atmos. Environ., 39, 3355, 2005
  23. Thomsen EL, Egsgaard H, Chem. Phys. Lett., 125(4), 378, 1986
  24. Sommar J, Gardfeldt K, Stromberg D, Feng X, Atmos. Environ., 35, 3049, 2001
  25. Pal B, Ariya PA, Environ. Sci. Technol., 38(12), 5555, 2004