Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.45, No.2, 160-165, 2007
LSX 제올라이트의 합성 및 질소 흡착 특성
Synthesis of LSX Zeolite and Characterization for Nitrogen Adsorption
Low Silica X (LSX) 제올라이트를 합성하여 질소 흡착 반응에 적용하였으며, 기존의 상용화된 질소흡착용 제올라이트와 질소 흡착 성능 및 그 특성을 비교하였다. LSX 제올라이트의 제조 변수로 젤 상태에서의 Na2O/(Na2O+K2O)비와 결정화 시간을 고려하였다. Na2O/(Na2O+K2O) 비가 0.75일 때 LSX 제올라이트가 합성됨을 XRD, SEM 분석으로부터 확인하였다. 합성된 LSX 제올라이트는 같은 faujasite 구조를 갖는 NaY나 NaX 제올라이트보다 Si/Al 비가 작고 거의 1에 수렴함을 XRF와 FT-IR 결과로부터 확인하였다. 1A(Li, Na, K), 2A(Mg, Ca, Ba) 족 양이온으로 교환된 LSX 제올라이트에 대해 질소 흡착 테스트를 수행한 결과, 양이온의 전하밀도가 증가할수록 질소 흡착량이 증가하였으며, LiLSX의 경우 질소 흡착량이 가장 많았다. LiLSX의 Li+ 이온 함량을 변화시켜 가며 질소 흡착량을 측정한 결과 Li/Al 비가 0.65 이상일 때, 질소 흡착량이 급격히 증가하였다. Li+ 이온은 제올라이트 세공 내의 supercage(site III, III') 에 위치할 때, 질소 흡착점의 역할을 하였다. LiLSX 제올라이트에 Ca2+ 이온을 이온교환시킨 결과 질소 흡착 성능이 더 향상되었는데, Ca/Al의 비가 0.26일 때 질소 흡착 성능이 가장 좋았다. LiCaLSX(Ca/Al=0.26) 제올라이트는 기존의 상용 NaX 제올라이트보다 질소 흡착 성능이 우수하였다.
The synthesis and the characterization of Low Silica X (LSX) zeolite for nitrogen adsorption have been studied. The performance of LSX zeolite for nitrogen adsorption was compared to that of the commercial zeolite. The Na2O/(Na2O+K2O) ratio in the gel and the crystallization time were fixed as the synthetic factor. The LSX zeolite was formed at the Na2O/(Na2O+K2O) ratio of 0.75. The formation of LSX zeolite was confirmed by XRD and SEM. The Si/Al ratio was investigated by using XRF and FT-IR. The synthesized LSX zeolite showed a lower Si/Al ratio than the NaY and NaX zeolites although they have a same faujasite structure. The Si/Al ratio of the LSX zeolite converged close to 1. 1A (Li, Na, K) and 2A (Mg, Ca, Ba) group elements were ion-exchanged to the LSX zeolite. As the charge density of cation rises, the amount of nitrogen adsorbed increased. Li+ ion-exchanged LSX zeolite showed the highest nitrogen adsorption weight. When the Li/Al ratio was over 0.65, nitrogen adsorption increased remarkably. Li+ ions located on the supercage (site III, III') in the LSX zeolite played a role as nitrogen adsorption sites. When the Ca2+ ions were added to the LiLSX zeolite by ion-exchange method, the performance for nitrogen adsorption increased more. The performance for the nitrogen adsorption was the highest at the Ca/Al ratio of 0.26. Nitrogen adsorption capacity of LiCaLSX (Ca/Al=0.26) zeolite was superior to the commercial NaX zeolite.
[References]
  1. Ruthven DM, Principles of Adsorption and Adsorption Process, John Wiley and Sons, New York, 1984
  2. Coe CG, Gaffrey TR, Srinivasan R, Naheiri T, in E. C. Vansant(Ed.), Separation Technology, Elsevier Science B. V., Amsterdam, 1994
  3. Ogawa N, Hirano S, Habashi K, U.S. Patent No. 5,868,818, 1999
  4. Lennartz JW, Hayhurst DT, Huang JT, Zeolites, 2, 121, 1982
  5. Coe CG, Kuznicki SM, U.S. Patent No. 4,544,378, 1985
  6. Baksh MSA, Kikkinides ES, Yang RT, Sep. Sci. Technol., 27(3), 277, 1992
  7. Bajusz IG, Goodwin JG, Langmuir, 13(24), 6550, 1997
  8. Jeon HJ, Catalysis an Introduction, Hanlimwon, 1995
  9. Kuhl GH, Zeolites, 7, 451, 1987
  10. Butter SA, Kuznicki SM, U.S. Patent No. 4,606,899, 1986
  11. Basaldella EI, Tara JC, Zeolites, 15, 243, 1995
  12. Plevert J, Direnzo F, Fajula F, Chiari G, J. Phys. Chem. B, 101(49), 10340, 1997
  13. Godber J, Baker MD, Ozin GA, J. Phys. Chem., 93, 1409, 1989
  14. Lechert H, Zeolites: Science and Technology, edited by Ribeiro, F. R., Rodrigues, A. E, Rollmann, L. D. and Naccache, C., NATO ASI Series E: Applied Science-No. 80, Martinus Nijhoff Publishers, Hague 151-192, 1984
  15. Dyer A, An Introduction to Zeolite Molecular Sieves, John Wiley and Sons, New York, 1989
  16. Choundary NV, Jasra RV, Bhat SGT, Zeolites and related microporous materials: state of the art 1994, edited by Weitkamp, J., Karge, H. G., Pfeifer, H., Holderich, W., 84 part B, Elsevier, 1247-1254, 1994
  17. Sherman JD, Zeolites: Science and Technology, edited by Ribeiro, F. R., Rodrigues, A. E, Rollmann, L. D. and Naccache, C., NATO ASI Series E: Applied Science-No. 80, Martinus Nijhoff Publishers, Hague 583-623, 1984
  18. Smudde GH, Slager TL, Coe CG, MacDougall JE, Weigel SJ, Appl. Spectrosc., 49(12), 1747, 1995