Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.44, No.5, 520-527, 2006
실리콘 산화막의 플라즈마 식각에 대한 표면반응 모델링
Surface Reaction Modeling for Plasma Etching of SiO2 Thin Film
본 연구에서는 FC(fluorocarbon) 플라즈마 반응기에서 입사하는 이온에너지에 따른 고분자 증착, 식각과 증착의 경쟁반응 및 물리적 스퍼터링 등의 여러 표면 현상들을 모델링하였다. SiO2 식각에 대한 표면반응은 식각반응 영역을 잘 혼합된 CSTR(continuous stirred tank reactor) 가정을 도입하여 이온 도움에 의한 식각으로 모사되었다. 정상상태 고분자층을 통한 식각과 증착의 경쟁반응의 모델링은 이온 도움에 의한 고분자 생성 및 분해 메커니즘을 제안하여 수행하였다. 이러한 메커니즘은 최근 발표된 실험 및 분자동력학적 전산모사 결과에 기초하였으며, 모델 계수들은 빔실험 결과 및 플라즈마 실험결과들을 이용하여 구하였다. 최종 개발된 모델의 결과들은 타당성을 검증하기 위해 문헌에 보고된 실험결과들과 비교하였다.
A realistic surface model is presented for prediction of various surface phenomena such as polymer deposition, suppression and sputtering as a function of incidence ion energy in high density fluorocarbon plasmas. This model followed ion enhanced etching model using the “well-mixed” or continuous stirred tank reactor (CSTR) assumption to the surface reaction zone. In this work, we suggested ion enhanced polymer formation and decomposition mechanisms that can capture SiO2 etching through a steady-state polymer film on SiO2 under the suppression regime. These mechanisms were derived based on experimental data and molecular dynamic simulation results from literatures. The model coefficients are obtained from fits to available beam and plasma experimental data. In order to show validity of our model, we compared the model results to high density fluorocarbon plasma etching data.
[References]
  1. Sze SM, “VLSI Technology,” 2nd ed., McGraw-Hill, New York, NY, 1983
  2. Schaepkens M, Oehrlein GS, J. Electrochem. Soc., 148(3), c211, 2001
  3. Standaert TEFM, Hedlund C, Joseph EA, Oehrlein GS, Dalton TJ, J. Vac. Sci. Technol. A, 22(1), 53, 2004
  4. Im YH, Hahn YB, Pearton SJ, J. Vac. Sci. Technol. B, 19(3), 701, 2001
  5. Cho BO, Hwang SW, Kim IW, Moon SH, J. Electrochem. Soc., 146(1), 350, 1999
  6. Butterbaugh JW, Gray DC, Sawin HH, J. Vac. Sci. Technol. B, 9, 1461, 1991
  7. Chang JP, Sawin HH, J. Vac. Sci. Technol. B, 19(4), 1319, 2001
  8. Kimura Y, Coburn JW, Graves DB, J. Vac. Sci. Technol. A, 22(6), 2508, 2004
  9. Chae H, Vitale SA, Sawin HH, J. Vac. Sci. Technol. A, 21(2), 381, 2003
  10. Humbird D, Graves DB, Hua X, Oehrlein GS, Appl. Phys. Lett., 84, 1073, 2004
  11. Gogolides E, Vauvert P, Kokkoris G, Turban G, Boudouvis AG, J. Appl. Phys., 88, 5570, 2000
  12. Abraham-Shrauner B, J. Appl. Phys., 94, 4776, 2003
  13. Gray DC, J. Vac. Sci. Technol. B, 11, 1243, 1993
  14. Gray DC, Sawin HH, Butterbaugh JW, J. Vac. Sci. Technol. A, 9, 779, 1991
  15. Butterbaugh JW, Gray DC, Sawin HH, J. Vac. Sci. Technol. B, 9, 1461, 1991
  16. Jin WD, Sawin HH, J. Electrochem. Soc., 150(11), g711, 2003
  17. Oehrlein GS, Zhang Y, Vender D, Haverlag M, J. Vac. Sci. Technol. A, 12(2), 323, 1994
  18. Schaepkens M, Oehrlein GS, Cook JM, J. Vac. Sci. Technol. B, 18(2), 848, 2000