Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.43, No.6, 745-750, 2005
탄소섬유용 프리커서 피치를 제조하기 위한 나프타 분해 잔사유의 개질
Reformation of Naphtha Cracking Bottom Oil for the Preparation of Carbon Fiber Precursor Pitch
등방성 피치계 탄소섬유 및 활성탄소섬유를 얻기 위한 프리커서 피치를 제조하기 위하여 NCB(naphtha cracking bottoms) oil을 열처리온도, 처리시간, 질소유량을 변화시키면서 개질하였다. 개질된 피치의 수율, 연화점, 원소분석, 분자량분포를 측정하고 용융방사하여 최적의 개질조건을 얻었다. 질소유량 1.25 vvm, 열처리온도 380 ℃, 처리시간 3 h 일 때 약 240 ℃의 연화점을 갖는 방사성이 우수한 프리커서 피치를 제조할 수 있었다. 이때의 수율은 약 21 wt%, C/H 몰비는 1.07에서 1.34로, 방향족화도는 0.85에서 0.88으로 증가하였고, 벤젠 및 퀴놀린 불용분은 각각 30.0 wt%, 1.5 wt% 이었다, 방사 온도는 프리커서 피치의 연화점보다 약 50 ℃ 높았으며 분자량은 250~1,250 범위에 분포되어 있지만 80% 이상은 250~700의 좁은 범위에 몰려있었다.
Naphtha cracking bottoms(NCB) oil was reformed by varying the heat treatment temperature, treatment time, and nitrogen flow rate in preparation of precursor pitch for isotropic pitch-based carbon fibers and activated carbon fibers. The reformed pitches were investigated in the yield, softening point, elementary analysis, and molecular weight distribution, and then the precursors reformed were melt spun to certify the optimum reforming conditions. The optimum precursor pitch was prepared when the NCB oil was reformed at 380 ℃, 3 h and 1.25 vvm N2, and it’s the softening point was around 240 ℃. The reforming resulted in product yield of 21 wt%. The C/H mole ratio of the precursor pitch increased from 1.07 to 1.34, the aromaticity increased from 0.85 to 0.88. The insolubles in benzene and quinoline were 30.0 wt% and 1.5 wt%, respectively. The spinning temperature was about 50 ℃ higher than the softening point. The molecular weights of the precursor components were distributed from 250 to 1250, and 80% of them were in the range of 250 to 700.
[References]
  1. Ryu SK, High Temp.-High Press., 22(4), 345, 1990
  2. Donnet JB, Wang TK, Peng JCM, Rebouillat S, Carbon Fibers, 3rd ed., Marcel Dekker Inc, New York, 1998
  3. Eom SY, Cho TH, Cho KH, Ryu SK, HWAHAK KONGHAK, 38(5), 591, 2000
  4. Kim MS, Kim DY, HWAHAK KONGHAK, 36(1), 34, 1998
  5. Shin CS, Lee KD, Lee SJ, Lee TH, HWAHAK KONGHAK, 36(3), 387, 1998
  6. Otani S, Sanada Y, Ohm Co., 229, 1980
  7. Brooks JD, Taylor GH, "Chemistry and Physics of Carbon", Marcel Dekker Inc., New York, 4, 234-240, 1968
  8. Yamada Y, Honda H, Abe T, J. Japan Petrol., 18(1), 758, 1979
  9. Edwards WF, Jin L, Thies MC, Carbon, 41(14), 2761, 2003
  10. In SJ, Ryu SK, Rhee BS, HWAHAK KONGHAK, 27(3), 291, 1989
  11. Fitzer E, Muellur K, Schaefer W, "Chemistry and Physics of Carbon", Marcel Dekker Inc., New York, 7, 237-240, 1971
  12. Lee GD, "Effect of Heat Treatment Temperature and Time during the NCB Oil Transformed Into Mesophase Pitch", Master Dissertation, Chungnam National Univ., Daejeon, Korea, 1989
  13. Yamada Y, J. Japan Petrol., 24(1), 74, 1981
  14. Griffin RR, Walker PL, 16th Biennial Conf. on Carbon, Univ. of California, Califormia, 16, 1983
  15. Hwang JS, Lee CH, Cho KH, Kim MS, Kim CJ, Ryu SK, Rhee BS, HWAHAK KONGHAK, 33(5), 551, 1995
  16. Chwastiak S, Lewis IC, Carbon, 16(2), 156, 1978