Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.43, No.6, 683-690, 2005
왕겨의 마이크로파 탄화속도
Kinetics on the Microwave Carbonization of Rice Chaff
왕겨를 마이크로파로 탄화하고 그의 탄화속도를 기존의 열적 탄화에 의한 탄화속도와 비교하였다. 왕겨를 300~600 ℃ 에서 각각 30분 동안 열적 탄화하고 그의 탄화속도를 분석한 결과 탄화온도가 증가할수록 질량감소 및 탄화도(C/H 몰비)가 현저히 증가했지만 왕겨에 마이크로파를 조사하면 입사전력과 조사시간이 증가해도 탄화가 일어나지 않았다. 그러나 600 ℃에서 30분 동안 탄화시켜 C/H 몰비가 3.0 이상인 탄화왕겨 6 wt%를 왕겨에 혼합시키고 마이크로파를 조사한 결과 탄화가 잘 되었고 그의 속도식은 마이크로파 입사전력 및 조사시간에 의존하였으며 열적 탄화와 마찬가지로 Arrhenius 식으로 잘 표현되었다. 이때 마이크로파 탄화로 얻어진 활성화에너지는 열적 탄화에 비하여 크게 낮은 반면에 반응속도상수는 훨씬 컸다. 이는 마이크로파 흡수촉진 매체, 즉 촉매적 개시제(initiator)로 사용된 탄화왕겨에 대한 마이크로파 에너지의 내부 부피가열 특성에 기인한 것으로 판단된다. 마이크로파 흡수특성에 대한 왕겨의 회분과 탄화왕겨의 탄화도 및 혼합비율에 대한 영향을 검토하였다.
The microwave carbonization of rice chaff was performed, and their kinetics were compared to those of conventional thermal carbonization. Thermal carbonization was carried out at 300-600 oC for 30 minutes. The weight loss and C/H mole ratio remarkably increased as increase of temperature, while there was no carbonization by microwave dielectric heating in spite of increasing incident power and irradiation time. However, microwave carbonization was successfully performed by addition of 6 wt% of thermal carbonized rice chaff, it’s C/H mole ratio is larger than 3.0, as a catalytic initiator to uncarbonized rice chaff, and the kinetics was depended on the incident power and irradiation time, resulting in the coincide with thermal carbonization to the Arrhenius equation. The activation energy of microwave carbonization was quite low as compared to that of thermal carbonization, while the kinetic constant was large. This is due to the internal volumetric heating characteristics of carbonized rice chaff by microwave. The effect of ash, and C/H mole ratio and amount of carbonized rice chaff were investigated on microwave carbonization.
[References]
  1. Bilbao R, Arauzo J, Millera A, Thermochim. Acta, 120, 133, 1987
  2. Bilbao R, Arauzo J, Millera A, Thermochim. Acta, 165, 103, 1990
  3. Bilbao R, Arauzo J, Salvador ML, Ind. Eng. Chem. Res., 34(3), 786, 1995
  4. Hajaligol M, "Rapid Pyrolysis of Cellulose", Ph. D. Thesis, Department of Chemical Engineering, MIT, 1980
  5. Hajaligol M, Howard JB, Peters WA, I & EC Process Des., 21, 457, 1982
  6. Baker RR, J. Therm. Anal. Calorim., 8, 163, 1975
  7. Suuberg E, Dalal VF, "A Study on the Effects of Heating Rate and Ambient Oxygen on the Global Rates of Cellulose Pyrolysis", Proc. East. States Sect. Comb. Inst., November, 65-71, 1987
  8. Varhegyi G, Antal MJ, Szekely T, Szabo P, Energy Fuels, 3, 329, 1989
  9. Vovelle C, Mellottee H, Delbourgo R, "Kinetics of the Thermal Degradation of Cellulose and Wood in Inert and Oxidative Atmospheres", 19th Symp. (Int.) Comb., The Combustion Institute, Pittsburgh, 797-805, 1982
  10. Kim DK, Cha CY, Lee WT, Kim JH, J. Ind. Eng. Chem., 7(6), 363, 2001
  11. Caddick S, Tetrahedron, 51, 10403, 1995
  12. Cha CY, Kim BI, Robert EL, Elaine MYQ, Fuel Sci. Technol. Int., 11(9), 1269, 1993
  13. Fu YC, Blaustein BD, Sharkey AG, Fuel, 51, 308, 1972
  14. Gasner LL, Denloye AO, Adamchak FR, Chem. Eng. Commun., 48, 349, 1986
  15. Chemat S, Aouabed A, Bartels PV, Esveld DC, Chemat F, J. Microwave Power Electromagnetic Energy, 34, 55, 1999
  16. Alves SS, Figueiredo JL, J. Anal. Appl. Pyrolysis, 13, 123, 1988
  17. Milosavljevic I, Suuberg EM, Ind. Eng. Chem. Res., 34(4), 1081, 1995
  18. Shafizadeh F, Chin PPS, "Thermal Deterioration of Wood", ACS Symp. Ser., 43, 57-81, 1977
  19. Thurner F, Mann U, Ind. Eng. Chem. Process Des. Dev., 20(3), 482, 1981
  20. Agarwal PK, Agnew JBA, Ravindran N, Weimann R, Fuel, 66, 1097, 1987
  21. Liu Q, Hu H, Zhou Q, Zhu S, Chen G, Fuel, 83, 713, 2004