Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.43, No.5, 632-636, 2005
산-염기 표면반응이 탄화규소/PMMA 나노복합재료의 열적·기계적 계면특성에 미치는 영향
Roles of Acid-Base Surface Interaction on Thermal and Mechanical Interfacial Behaviors of SiC/PMMA Nanocomposites
본 실험은 화학적 표면처리된 탄화규소(SiC)가 PMMA 나노복합재료의 열안정성 및 기계적 계면특성에 미치는 영향에 대하여 고찰하였다. 표면처리된 SiC의 표면특성은 산·염기도, 접촉각 측정 그리고 FT-IR을 사용하여 알아보았으며, SiC/PMMA 나노복합재료의 열안정성은 열중량 분석을 통하여 알아보았다. 또한, 기계적 계면물성은 임계응력 세기인자(critical stress intensity factor, KIC)와 임계 변형에너지 방출속도(critical strain energy release rate, GIC) 측정을 통해 고찰하였다. 실험결과, 산성 용액으로 표면처리한 SiC(A-SiC)의 표면 산도가 염기성(B-SiC) 또는 표면처리 하지 않은 SiC(V-SiC)보다 높았으며, 접촉각 측정 결과, 산성 용액으로 표면처리는 극성요소의 증가에 기인하는 A-SiC의 표면자유에너지를 증가시켰다. KIC와 GIC같은 기계적 계면성질은 A-SiC가 향상되었는데, 이러한 결과는 충전재와 고분자 사슬간의 산·염기 상호작용에 의한 계면결합력의 향상에 의한 것으로 판단된다.
In this work, the effect of chemical treatments on surface properties of SiC was investigated in thermal and mechanical interfacial behaviors of SiC/PMMA nanocomposites. The acid/base value, contact angles, and FT-IR analysis were performed for the study of surface characteristics of the SiC studied. The thermal stabilities of the SiC/PMMA nanocomposites were investigated by thermogravimetric analysis (TGA). Also the mechanical interfacial properties of the composites were studied in critical stress intensity factor (KIC) and critical strain energy release rate (GIC) measurements. As a result, the acidically treated SiC (A-SiC) had higher acid value than that of untreated SiC (V-SiC) or basically treated SiC (B-SiC). The acidic solution treatment led to an increase in surface free energy of the SiC, mainly due to the increase of its specific component. Thermal and mechanical interfacial properties of the SiC/PMMA nanocomposites, including initial decomposition temperature (IDT), KIC, and GIC had been improved in the acidic treatment on SiC. This was due to the improvement in the interfacial bonding strength, resulting from the acid-base interfacial interactions between the fillers and polymeric matrix.
[References]
  1. Knox CE, Handbook of Composites, ed. G. lubin, van Nostrand Reinhold, New York, 1982
  2. Schwartz MM, Composite Materials Handbook, McGraw-Hill, New York, 1992
  3. Park SJ, Interfacial Forces and Fields: Theory and Applications, ed. J. P. Hsu, Marcel Dekker, New York, 1999
  4. Rio CD, Ojeda MC, Acosta JL, Eur. Polym. J., 36(8), 1687, 2000
  5. Park SJ, Kim JS, J. Colloid Interface Sci., 232(2), 311, 2000
  6. Frysz CA, Chung DDL, Carbon, 35(8), 1111, 1997
  7. Shahidzadeh-Ahmadi NS, Chehimi MM, Khonsari FA, Belkacemi NF, Amouroux J, Delamar M, Colloids Surf., 105(2-3), 277, 1995
  8. Park SJ, Seo DI, Nah CW, J. Colloid Interface Sci., 251(2), 225, 2002
  9. Adamson AW, Physical Chemistry of Surfaces, 5th ed. John Wiley, New York, 1990
  10. Israelachvili JN, Intermolecular and Surface Forces, 2nd ed. Academic Press, San Diego, 1992
  11. Hoecker F, Kargerkocsis J, J. Appl. Polym. Sci., 59(1), 139, 1996
  12. Ma K, Chung TS, Good RJ, J. Polym. Sci. B: Polym. Phys., 36(13), 2327, 1998
  13. Boehm HP, Diehl E, Heck W, Sappok R, Adv. Catal., 3, 669, 1964
  14. Park SJ, Kim JS, J. Colloid Interface Sci., 244(2), 336, 2001
  15. Park SJ, Seo DI, Lee JR, J. Colloid Interface Sci., 251(1), 160, 2002
  16. Van Oss CJ, Interfacial Forces in Aqueous Media, Marcel Dekker, New York, 1994
  17. Horowitz HH, Metzger G, Anal. Chem., 35(10), 1464, 1963
  18. Park SJ, Kim HC, J. Polym. Sci. B: Polym. Phys., 39(1), 121, 2001
  19. Griffith AA, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 221, 163, 1921
  20. Irwin GR, Handbuch Der Physik: Fracture, vol. 5, Springer Verlag, Berlin, 1958