Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.43, No.5, 627-631, 2005
(La0.8Sr0.2)0.95MnO3/Yttria Stabilized Zirconia 복합체 전극을 이용한 고온 수증기 전기분해 연구
A Study on the High Temperature Steam Electrolysis Using (La0.8Sr0.2)0.95MnO3/Yttria Stabilized Zirconia Composite Electrodes
고온수증기 전기분해의 양극물질로 이용될 수 있는 (La0.8Sr0.2)0.95MnO3/yttria-stabilized zirconia(LSM/YSZ) 복합체 전극을 x-ray diffractometry, scanning electron microscopy 그리고 galvanodynamic, galvanostatic polarization method 로 연구하였다. 이런 목적으로 perovskite-type의 LSM 물질은 공침법을 이용하여 제조하였으며, 8 mol% YSZ와 몰분 율을 달리하여 복합체 전극을 합성하였다. LSM/YSZ 복합체 전극은 평판의 YSZ 전해질에 LSM/YSZ 복합체를 스크린 프린팅 후 1,100 ℃에서 열처리 코팅하여 제조하였다. 실험결과로부터 LSM/YSZ 복합체 전극의 전기화학적 특성 은 전극을 이루는 삼상계면의 구조와 전기분해 온도에 영향을 받는다는 것을 확인하였다.
The (La0.8Sr0.2)0.95MnO3/yttria-stabilized zirconia (LSM/YSZ) composites were investigated as anode materials for high temperature steam electrolysis using X-ray diffractometry, scanning electron microscopy, galvanodynamic and galvanostatic polarization method. For this purpose, the LSMperovskites were fabricated in powders by co-precipitation method and then were mixed with 8 mol% YSZ powders in different molar ratios. The LSM/YSZ composites were deposited on 8 mol% YSZ electrolyte disks by means of a screen printing method, followed by sintering at temperatures above 1,100 ℃. From the experimental results, it is concluded that the electrochemical properties of LSM and the LSM/YSZ composites are closely related to their microstructure and operating temperatures.
[References]
  1. Kobayashi T, Abe K, Ukyo Y, Matsumoto H, Solid State Ion., 138(3-4), 243, 2001
  2. Chae US, Park KM, Seon HH, Choo ST, Yun YS, Trans. Korean Hydrogen New Energy Soc., 15(2), 98, 2004
  3. Hino R, Haga K, Aita H, Sekita K, Nucl. Eng. Des., 233, 363, 2004
  4. Wendt H, Electrochemical Hydrogen Technologies(Electrochemical Production and Combustion of Hydrogen), 1rd ed, Elsevier Science Publishing Company, New York, NY, 1990
  5. Sahu AK, Ghosh A, Suri AK, Sengupta P, Bhanumurthy K, Mater. Lett., 58, 3332, 2004
  6. Marinkovic ZV, Mancic L, Cribier JF, Ohara S, Fukui T, Milosevic O, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 375, 615, 2004
  7. Ji Y, Kilner JA, Carolan MF, Solid State Ion., 176(9-10), 937, 2005
  8. Hayashi K, Yamamoto O, Nishigaki Y, Minoura H, Solid State Ion., 98(1-2), 49, 1997
  9. Barbucci A, Bozzo R, Cerisola G, Costamagna P, Electrochim. Acta, 47(13-14), 2183, 2002
  10. Wang S, Jiang Y, Zhang Y, Yan J, Li W, Solid State Ion., 113, 291, 1998
  11. Lee HY, Oh SM, Solid State Ion., 90(1-4), 133, 1996
  12. Jorgensen MJ, Primdahl S, Bagger C, Mogensen M, Solid State Ion., 139(1-2), 1, 2001
  13. Chen F, Liu M, J. European Ceram. Soc., 21, 127, 2001
  14. Jiang SP, Love JG, Zhang JP, Hoang M, Ramprakash Y, Hughes AE, Badwal SPS, Solid State Ion., 121(1-4), 1, 1999
  15. Choi JH, Jang JH, Oh SM, Electrochim. Acta, 46(6), 867, 2001
  16. Kim JD, Kim GD, Moon JW, Park YI, Lee WH, Kobayashi K, Nagai M, Kim CE, Solid State Ion., 143(3-4), 379, 2001
  17. Mitterdorfer A, Gauckler LJ, Solid State Ion., 11, 185, 1998
  18. Lee S, Lee KS, Woo SK, Kim JW, Ishihara T, Kim DK, Solid State Ion., 158(3-4), 287, 2003