Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.43, No.5, 621-626, 2005
Amberlyst-15 촉매의 존재 하에서 올레산과 메탄올의 에스테르화 반응 속도식 연구
A Kinetic Study on the Esterification of Oleic Acid with Methanol in the Presence of Amberlyst-15
Amberlyst-15 고체 산 촉매를 사용하여 올레산을 메탄올과 반응시켜 바이오 디젤의 성분이 되는 지방산 메틸 에스테르로 전환시켰다. 본 연구에서는 시료의 산가를 측정하고 전환율을 구함으로써 반응 온도, 메탄올 대 올레산의 몰 비및 촉매의 양이 반응에 미치는 영향을 살펴보았다. 실험 범위 내에서 반응 온도가 20 ℃ 상승할 때에 반응 속도는 약 2배씩 증가하였다. 그리고 메탄올 대 올레산의 몰 비가 증가 될 때는 최종 전환율은 증가하였지만, 반응에는 뚜렷한 차이가 없었다. 촉매 역시 반응에 중요한 변수로써, Amberlyst-15의 양을 2배로 증가시켰을 때, 반응속도는 1.2-1.3배 빨라졌다. 실험 데이터를 정량적으로 해석하기 위해 동역학식 연구를 하였으며 모사 균일 혼합물 모델(pseudohomogeneous model)을 이용한 2차 반응 속도식을 전개하였다.
The esterification reaction of free fatty acid with methanol was investigated in the presence of catalyst, Amberlyst-15, producing fatty acid methyl ester, namely, biodiesel. In this paper, the effects of the reaction parameters such as reaction temperature, mole ratio of alcohol to oleic acid and mass of catalyst on the catalytic activity have been examined. The results showed that the reaction rate increased about twice as the temperature increased every 20 ℃ in the reaction temperature range from 333 K to 373 K. The equilibrium conversion rate of oleic acid increased with the feed mole ratio of alcohol to acid ranging from 6:1 to 44:1. When the feed mole ratio was higher than 44:1, all the results were similar to that of 44:1. As for the influence of the mass of catalyst, the initial reaction rate increased from 1.2 to 1.3 times as the mass of catalyst doubles in the range of the catalyst weight from 5 to 20 wt%. The experiment data obtained were well described by the second reaction rate using a pseudo-homogeneous model.
[References]
  1. Barnwal BK, Sharma MP, Renew. Sust. Energ. Rev., 9(4), 363, 2005
  2. Leung YC, Water Air Soil Pollut., 130, 277, 2001
  3. Graboski MS, McCormick RL, Prog. Energy Combust. Sci., 24(2), 125, 1998
  4. Connemann J, Fischer J, Biodiesel in Europe 1998, Paper Presented at Int. Liquid Biofuels Congress, Curitiba, Brasil, 1998
  5. Noureddini H, Gao X, Philkana RS, Bioresour. Technol., 96(7), 769, 2005
  6. Kusdiana D, Saka S, Fuel, 80(5), 693, 2001
  7. Bradshaw GB, Meuly WC, "Preparation of Detergents", U.S. Patent No. 2360844, 1994
  8. Altiokka MR, Appl. Catal. A: Gen., 239(1), 141, 2003
  9. Teo HTR, Saha B, J. Catal., 228(1), 174, 2004
  10. Lee MJ, Wu HT, Lin HM, Ind. Eng. Chem. Res., 39(1), 4094, 2000
  11. Gangadwala J, Mankar S, Mahajani S, Kienle A, Stein E, Ind. Eng. Chem. Res., 42(10), 2146, 2003
  12. Sano T, Yamaguchi N, Adachi T, J. Chem. Eng. Jpn., 7, 255, 1974
  13. Yadav GD, Thathagar MB, React. Funct. Polym., 52, 99, 2002
  14. Suh SS, Ihm SK, HWAHAK KONGHAK, 18(6), 461, 1980
  15. http://www.rohmhaas.com/ionexchange/IP/sac.htm