Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.43, No.5, 616-620, 2005
기상 공정에 의한 구형 형상의 헥사알루미네이트계 형광체 제조
Preparation of Hexaaluminate Phosphor Particles with Spherical Shape by Gas Phase Reaction Process
Ammonium dihydrogen phosphate 융제의 첨가가 고온 분무열분해 공정에 의해 합성된 녹색 발광의 헥사알루미네이트계 형광체의 형태 및 발광 특성에 미치는 영향을 보았다. 융제를 함유하지 않은 분무용액으로부터 반응기 온도 900 ℃ 에서 1,650 ℃ 사이에서 합성된 분말은 매우 속이 빈 형태를 가졌다. 반면에 ammonium dihydrogen phosphate 융제를 첨가한 분무용액으로부터 반응기 온도 900 ℃ 에서 1,650 ℃ 사이에서 합성된 분말은 완벽한 구형 형상을 가지면서 치밀한 구조를 가졌다. 반응기 온도 1,600 ℃ 이상에서 ammonium dihydrogen phosphate 융제를 첨가한 분무용 액으로부터 마그네토플룸비아트 구조를 가지는 헥사알루미네이트 형광체 분말이 합성되었다. Ammonium dihydrogen phosphate 융제는 저온에서 형광체의 발광 특성을 증가시키는데 효과적이었다. 반응기 온도 1,650 ℃의 환원분위기하에서 분무열분해 공정에 의해 직접 제조된 형광체는 융제의 첨가 유무에 무관하게 후열처리 과정을 통해 최적화된 형광체와 유사한 발광 세기를 가졌다.
The morphology and photoluminescence characteristics of green light emitting hexaaluminate phosphor particles prepared by high temperature spray pyrolysis from spray solution with and without ammonium dihydrogen phosphate flux were investigated. The particles prepared from spray solution without flux material had hollow morphology at preparation temperatures between 900 ℃ and 1,650 ℃. Ammonium dihydrogen phosphate flux added into spray solution enabled the formation of particles with spherical shape and filled morphology at preparation temperatures between 900 ℃ and 1,650 ℃. The hexaaluminate phosphor particles with magnetoplumbite structure were directly prepared by spray pyrolysis from spray solution with ammonium dihydrogen phosphate flux above 1,600 ℃. Ammonium dihydrogen phosphate flux was effective in improving the photoluminescence intensity of the phosphor particles at low preparation temperatures. The phosphor particles prepared from spray solution with and without flux material by spray pyrolysis under reducing atmosphere at 1,650 ℃ had comparable photoluminescence intensities with that of the phosphor particles optimized by post-treatment.
[References]
  1. Kang YC, Roh HS, Park SB, Adv. Mater., 12, 451, 2000
  2. Kim EJ, Kang YC, Park HD, Ryu SK, Mater. Res. Bull., 38, 515, 2003
  3. Roh HS, Kim EJ, Kang HS, Kang YC, Park HD, Park SB, Jpn. J. Appl. Phys., 42, 2741, 2003
  4. Kang YC, Roh HS, Park SB, J. European Ceram. Soc., 22, 1661, 2002
  5. Shimomura Y, Kijima N, J. Electrochem. Soc., 151(4), H6, 2004
  6. Shimomura Y, Kijima N, Electrochem. Solid State Lett., 7(2), H1, 2004
  7. Shimomura Y, Kijima N, Electrochem. Solid State Lett., 7(5), H18, 2004
  8. Shimomura Y, Kijima N, J. Electrochem. Soc., 151(8), H192, 2004
  9. Kang YC, Seo DJ, Park SB, Park HD, Jpn. J. Appl. Phys., 40(6A), 4083, 2001
  10. Chang H, Lenggoro IW, Ogi T, Okuyama K, Mater. Lett., 59(10), 1183, 2005
  11. Zhang J, Zhang Z, Tang Z, Lin Y, Mater. Chem. Phys., 72, 81, 2001
  12. Smets BMJ, Mater. Chem. Phys., 16, 283, 1987