Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.43, No.4, 482-486, 2005
향오일을 함유한 Poly(ε-caprolactone)/Poly(ethyleneimine) 마이크로캡슐의 방출거동
Release Behaviors of Poly(ε-caprolactone)/Poly(ethyleneimine) Microcapsules Containing Fragrant Oil
향오일이 흡착된 Al2O3를 심물질로 함유한 생분해성 poly(ε-caprolactone) (PCL)/poly(ethylene imine) (PEI) 마이크로캡슐을 PEI의 함량에 따라 제조하였다. 교반속도 그리고 유화제의 농도에 따른 마이크로캡슐의 직경과 모폴로지는 주사전자현미경을 이용하여 관찰하였고, 열적 거동은 DSC를 통해 알아보았다. 또한, 향오일 방출거동을 알아보기 위해 UV.vis. 흡광광도법으로 흡광도를 측정하여 방출된 향오일의 양을 측정하였다. 실험 결과, PCL/PEI 마이크로캡슐의 입자크기는 교반속도와 유화제의 농도가 증가할수록 감소하였다. 그리고 표면 모폴로지는 PEI의 함량이 증가함에 따라 표면은 변했고, 마이크로캡슐의 용융 엔탈피(ΔHm)은 증가하는 것을 확인할 수 있었다. 향오일의 방출속도는 PEI의 함량이 증가함에 따라 증가하는 경향을 나타냈다. 또한, 이는 친수성인 PEI의 함량비가 증가함에 따라 캡슐표면의 친수성 그룹이 증가하였기 때문에 향오일의 확산이 용이하게 되었기 때문인 것으로 판단된다.
The biodegradable poly(ε-caprolactone)(PCL)/poly(ethylene imine)(PEI) microcapsules containing Al2O3 and fragrant oil were prepared with different PEI contents. The effects of stirring rate and concentration of the surfactant on the diameter and morphologies of microcapsules were investigated by using scanning electron microscope (SEM). Thermal behaviors were studied by using a differential scanning calorimetry(DSC), and the release behaviors of fragrant oil from microcapsule were characterized by UV/vis. spectrophotometer. As a result, the average particle size of the microcapsules decreased with increasing the stirring rate or concentration of the surfactant. The surface morphologies of the microcapsules were changed from smooth surfaces to skin-like rough surfaces as increasing the PEI content. These results were mainly due to the increased hydrophilic groups at the microcapsule surfaces, resulting in increasing the release rate of fragrant oil in the microcapsules studied.
[References]
  1. Benita S, Microcapsulation: Method and Industrial Application, Marcel Deker, New York, 1997
  2. Lazzi LA, Nixon JR, "Microcapssulation", 193, Marcel Dekker, New York, 1997
  3. Park SJ, Shin YS, Lee JR, J. Colloid Interface Sci., 241(2), 502, 2001
  4. Erdem B, Sudol ED, Dimonie VL, El-Aasser MS, J. Polym. Sci. A: Polym. Chem., 38(24), 4441, 2000
  5. ODonnell PB, McGinity JW, Adv. Drug Deliv. Rev., 28(1), 25, 1997
  6. Xu X, Yu H, Gao S, Ma H, Leon K, Wang S, Biomaterials, 23(17), 3765, 2002
  7. Palmieri GF, Bonacucina G, Martino PD, Martelli S, Int. J. Pharm., 242(1-2), 175, 2002
  8. Kim HK, Park TG, Int. J. Pharm., 229(1-2), 107, 2001
  9. Hong KJ, Park SM, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 272(2), 418, 1999
  10. Huh KM, Bae YH, Polymer, 40(22), 6147, 1999
  11. Ng CS, Teoh SH, Chung TS, Hutmacher DW, Polymer, 41(15), 5855, 2000
  12. Shen Y, Sun W, Zhu KJ, Shen Z, J. Biomed. Mater. Res., 50(4), 528, 2000
  13. Helander IM, Alakomi HL, Latvakala K, Koski P, Microbiology, 143(10), 3193, 1997
  14. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP, Proc. Natl. Acad. Sci. U.S.A., 92(16), 7297, 1995
  15. Nguyen HK, Lemieux P, Vinogradov SV, Gebhart CL, Guerin N, Paradis G, Bronich TK, Alakhov VY, Kabanov AV, Gene Ther., 7(2), 126, 2000
  16. Sen M, Guven O, Radiat. Phys. Chem., 55(2), 113, 1999
  17. Arriagada FJ, Osseo-Asare K, J. Colloid Interface Sci., 211(2), 210, 1999
  18. Yilmaz G, Jongboom ROJ, Feil H, Hennink WE, Carbohydr. Polym., 45(4), 403, 2001