Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.43, No.4, 452-457, 2005
실리카라이트 폼에 담지된 MFI 제올라이트 촉매의 제조와 n-옥탄 분해반응에서 이들의 촉매 성질
Preparation of MFI Zeolite Catalyst Supported on Silicalite Foam and Its Catalytic Property in the Cracking of n-Octane
실리카라이트 폼에 0.2 μm 정도의 가는 MFI 제올라이트 입자를 담지하여 만든 폼(foam) 촉매에서 n-옥탄의 분해반응을 조사하였으며, 생성물 분포에 Delplot 기법을 적용하여 반응기구를 고찰하였다. 담지된 MFI 제올라이트의 Si/A1 몰비는 25로 추정되며, 담지량은 실리카라이트 폼의 25 wt%이었다. 겉보기 밀도는 0.11 gㆍcm-3로 낮아 촉매 충전량을 0.02 g에서부터 0.5 g까지 바꿀 수 있어서 압력손실 없이 반응물과 생성물의 체류시간을 폭 넓게 조절하였다. 촉매 충전량이 많아지면 n-옥탄의 전환율과 올레핀 수율이 높아졌다. 촉매를 조금 사용하였을 때 생성물 분포는 단순하여 양성자 분해기구로 설명할 수 있었다. 촉매 사용량이 많아지면 분해 생성물의 추가 반응이 진행되어 반응성이 낮은 올레핀과 파라핀의 함량이 많아지며 생성물 분포가 복잡해졌다.
Foam-type MFI zeolite catalyst was prepared by dispersing fine (-0.2 μm) particles of MFI zeolite on silicalite foam. Catalytic cracking of n-octane was investigated over the foam-type catalyst and Delplot method was employed to interpret product compositions for deducing reaction mechanism. The Si/Al molar ratio of dispersed MFI zeolite was estimated 25 and its dispersed amount of silicalite foam was 25 wt%. Since the apparent density of the foam type catalyst was very low 0.11 gㆍcm-3, the catalyst loading amount could be varied from 0.02 g to 0.5 g without concerning pressure drop, providing a wide variance in the residence time of the reactants and products. The conversion and olefin yield in the catalytic cracking of n-octane increased with the catalyst loading. The product composition was very simple and could be explained by applying the protolytic cracking mechanism when the catalyst loading was small. Higher loading of the catalyst brought about further reactions of cracked products, accumulating lower olefin and paraffin with low reactivity in product stream and resulting in complex product composition.
[References]
  1. Breck DW, "Zeolite Molecular Sieves", Wiley, New York, 725-755, 1974
  2. Yoshimura Y, Kijima N, Hayakawa T, Murata K, Suzuki K, Mizukami F, Matano K, Konishi T, Oikawa T, Saito T, Shiojima M, Shiozawa K, Wakui K, Sawada G, Sato K, Matsuo S, Yamaoka N, Catal. Surv. Jpn., 4(2), 157, 2000
  3. Park YK, Jeon JY, Han SY, Kim JR, Lee CW, HWAHAK KONGHAK, 41(5), 549, 2003
  4. Corma A, Orchilles AV, Microporous Mesoporous Mater., 35, 21, 2000
  5. Song YS, Seo G, J. Res. Ins. Catal. (Chonnam National Univ.), 24, 17, 2003
  6. Degnan TF, Chitnis GK, Schipper PH, Microporous Mesoporous Mater., 35, 245, 2000
  7. Jung JS, Kim TJ, Seo G, Korean J. Chem. Eng., 21(4), 777, 2004
  8. Lee YJ, Lee JS, Park YS, Yoon KB, Adv. Mater., 13(16), 1259, 2001
  9. Matsukata M, Ogura M, Osaki T, HariPrasadRao PR, Nomura M, Kikuchi E, Top. Catal., 9(1-2), 77, 1999
  10. Jung JS, Park JW, Seo G, Appl. Catal. A: Gen., 288, 149, 2005
  11. Treacy MMJ, Higgins JB, "Collection of Simulated XRD Powder Patterns for Zeolites", 4th rev. ed., Elsevier, 2001
  12. Sawa M, Niwa M, Murakami Y, Zeolites, 10(4), 307, 1990