Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.6, 762-770, 2004
TiO2 수용상에서의 광촉매반응에 대한 pH, 양이온, 음이온, 용존산소, 자외선 및 유기물의 영향
Effect of pH, Anions, Cations, DO, UV and Organics on the Photocatalytic Reaction in TiO2 Slurry
물에 분산된 광촉매 TiO2 분말에 대하여, 광촉매 활성도에 영향을 미치는 여러 실험조건과 광촉매 분해능과의 상관관계를 여러 제조사의 광촉매 분말에 대하여 관찰하였다. 수용상의 pH와 유기물 분해능의 상관관계에 있어서 pH 5-7에서 분해율이 가장 높게 나타났으며 그 외 pH 영역에서는 유기물 분해율이 크게 감소하였다. 수용상에 존재하는 음이온과 양이온은 그 이온농도와 광촉매 종류에 따라서 분해율이 달라짐을 보여주었다. 용존 산소는 전자를 제거하는 효과로 추측되는 현상으로 인하여 광분해 효율을 증가시켰으며, 조사되는 UV 광원의 파장에 따라 광촉매 시료들에 대한 유기물 분해율 특성은 영향을 받았다. 본 연구에 사용된 특정한 광촉매 시료는 분해 유기물의 종류 및 실험조건에 상관없이 항상 우월한 유기물 분해능을 보여주지 않아, 수용상에 분산된 광촉매 분말의 유기물 분해반응은 그 광촉매가 접하는 실험 환경에 따라 매우 민감하게 분해능이 달라짐을 알 수 있었다.
With respect to the photocatalytic TiO2 powder dispersed in the water, the relationship between the experimental conditions influencing photocatalytic activities and the degree of decomposition were examined for the various sources of photocatalytic powder. For the relationship between pH and level of organic decomposition, a high degree of decomposition was shown in the range of pH 5 to 7, whereas the activity was significantly reduced out of the range. The cations and anions contained in the slurry also affected the decomposition depending on their concentrations and the sources of photocatalytic TiO2 powder. Dissolved oxygen enhanced the degree of decomposition. This might be due to the effect of oxygen acting as an electron scavenger. The destruction yields of 4CP with the photocatalytic TiO2 powders were affected by the wavelength of irradiated UV light on the TiO2 powder. One particular source of TiO2 powder has not always shown superior activities irrespective of kinds of target organics and experimental conditions. These showed that the degree of organic decomposition by the photocatalytic TiO2 powders dispersed in the water varied significantly, depending on the environmental conditions the photocatalyst was surrounded.
[References]
  1. Serpone N, Pelizzetti E, Photocatalysis, Fundamentals and Applications, John Wiley and Sons., N.Y., 1989
  2. Lu GQ, Linsebigler A, Yates JT, J. Phys. Chem., 98(45), 11733, 1994
  3. Kurtz RL, Stockbauer R, Madey TE, Surf. Sci., 218, 178, 1989
  4. Bourgeois S, Jomard F, Perdereau M, Surf. Sci., 279, 349, 1992
  5. Hugenschmidt MB, Gamble L, Campbell CT, Surf. Sci., 302, 329, 1994
  6. Pelizzetti E, Minero C, Electrochim. Acta, 38, 47, 1993
  7. Smith PB, Bernasek SL, Surf. Sci., 188, 241, 1987
  8. Yang T, Wan W, J. Photochem. Photobiol. A-Chem., 69, 241, 1992
  9. Muraki H, Saji T, Fujihira M, Aoyagui S, J. Electroanal. Chem., 169, 319, 1984
  10. Matsumoto Y, Shimuzu T, Sato E, Electrochim. Acta, 27, 419, 1982
  11. Bard AJ, J. Photochemistry., 10, 59, 1979
  12. Jung KY, Park SB, Appl. Catal. B: Environ., 25(4), 249, 2000
  13. Zane D, Decker F, Razzini G, Electrochim. Acta, 38, 37, 1993
  14. Gerischer H, Electrochim. Acta, 38, 3, 1993
  15. Litter MI, Appl. Catal. B: Environ., 23(2-3), 89, 1999
  16. Hagfeldt A, Gratzel M, Chem. Rev., 95(1), 49, 1995
  17. Kim KW, Lee EH, Kim YJ, Lee MH, Kim KH, Shin DW, HWAHAK KONGHAK, 41(2), 152, 2003
  18. Kim KW, Lee EH, Kim YJ, Lee MH, Shin DW, HWAHAK KONGHAK, 41(2), 160, 2003
  19. Kim KW, Lee EL, Kim YJ, Lee MH, Shin DW, J. Photochem. Photobiol. A-Chem., 161, 11, 2003
  20. Kim KW, Lee EL, Kim YJ, Lee MH, Kim KH, Shin DW, J. Photochem. Photobiol. A-Chem., 159, 301, 2003
  21. Vinodgopal K, Wynkoop DE, Kamat PV, Environ. Sci. Technol., 30(5), 1660, 1996
  22. Anpo M, Aikawa N, Kubokawa Y, J. Phys. Chem., 88, 3998, 1984
  23. Pelizzetti E, Maurino V, Minero C, Carkin V, Pramauro E, Zerbinati O, Tosato ML, Environ. Sci. Technol., 24(10), 1559, 1990
  24. Jacoby WA, Nimlos MR, Blake DM, Environ. Sci. Technol., 28(9), 1661, 1994
  25. Dibble LA, Raupp GB, Environ. Sci. Technol., 26(3), 492, 1994
  26. D'Oliveira JC, Al-Sayyed G, Pichat P, Environ. Sci. Technol., 24(7), 990, 1994
  27. Matthews RW, J. Phys. Chem., 92, 6853, 1988
  28. Theurich J, Linder M, Bahnemann DW, Langmuir, 12(6), 6368, 1996