Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.6, 735-740, 2004
실시간 In-situ IR분광법을 이용한 Isophorone Diisocyanate(IPDI)와 Dimethylol Alkanoic Acid계 폴리우레탄 프리폴리머의 반응 속도론 연구
Kinetic Studies on the Synthesis of Polyurethane Prepolymer with Isophorone Diisocyanate(IPDI) and Dimethylol Alkanoic Acids by Real-Time In-situ IR Spectroscopy
폴리우레탄 생성을 위한 프리폴리머 중합의 속도론적 연구를 위하여 정량적 분석이 실시간으로 가능한 in-situ IR 분광법을 사용하고 isophorone diisocyanate(IPDI)와 dimethylol propionic acid(DMPA)의 용액중합(IP 반응)과 IPDI와 dimethylol butanoic acid(DMBA)의 용액중합(IB 반응)을 반응온도 60-90 ℃ 및 [NCO]/[OH]=1.0 하에서 수행하였다. 반응 속도는 일련의 IR 스펙트럼에서 NCO 신축진동흡수(2,265 cm-1)의 흡광도 변화를 모니터링하여 얻었다. 반응은 수산기와 이소시아네이트기의 농도에 대하여 각각 1차로 표시할 수 있었으며, 전체적으로는 2차 반응속도 법칙에 따랐다. 반응 속도 상수로부터 구한 활성화 파라미터는 IP 반응의 경우, 활성화 에너지(Eα)=42.2 kJ/mol, 활성화 엔탈피(ΔH)=39.3 kJ/mol 및 활성화 엔트로피 (ΔS)=-146.7 J/molㆍK이였으며, IB 반응은 Eα=36.9 kJ/mol, ΔH34.0 kJ/mol 및 ΔS=-163.3 J/molㆍK이었다.
Kinetics of pre-polymerization of polyurethane formation between isophorone diisocyanate (IPDI) and dimethylol propionic acid (DMPA) in solution state (IP reaction), and IPDI and dimethylol butanoic acid (DMBA) in solution state (IB reaction) were studied by using quantitative real-time in-situ IR spectroscopy at different temperatures in the range of 60-90 ℃ with [NCO]/[OH] ratio of 1.0. The reaction rate was obtained from monitoring the change of NCO (2,265 cm-1) stretching band in series IR spectra. The reaction was in accord with the first-order for the concentrations of hydroxyl groups and isocyanate groups respectively, which conformed to the second order law entirely. The activation parameters were obtained from the evaluation of kinetic data as follows. For IP reaction, activation energy (Ea)=42.2 kJ/mol, activation enthalpy (ΔΗ)=39.3 kJ/mol and activation entropy (ΔH)=-146.7 J/mol K. For IB reaction, Ea=36.9 kJ/mol, ΔH=34.0 kJ/mol and ΔS=-163.3 J/mol K.
[References]
  1. Oertel G, Polyurethane Handbook, 2nd ed., Chap. 2, Hanser, Munich, 1985
  2. Hager W, Ueberreiter K, Makromol. Chem., 180(4), 939, 1979
  3. Ajithkumar S, Kansara SS, Patel NK, Eur. Polym. J., 34(9), 1273, 1998
  4. Turri S, Trombetta T, Levi M, Macromol. Mater. Eng., 283, 144, 2000
  5. Anzuino G, Pirro A, Rossi G, Polo-Friz LP, J. Polym. Sci. A: Polym. Chem., 13(7), 1657, 1975
  6. David Dj, Staley HB, Analytical Chemistry of the Polyurethanes, Volume XVI, Part III, Wiley Interscience, New York, NY, 1969
  7. Kincal D, Ozkar S, J. Appl. Polym. Sci., 66(10), 1979, 1997
  8. Long TE, Liu HY, Schell BA, Teegarden DM, Uerz DS, Macromolecules, 26(23), 6237, 1993
  9. Puskas JE, Lanzendorfer MG, Pattern WE, Polym. Bull., 40(1), 55, 1998
  10. Storey RF, Donnalley AB, Maggio TL, Macromolecules, 31(5), 1523, 1998
  11. Kim JK, Cho HK, Noh ST, Kang SC, J. Korean Ind. Eng. Chem., 13(8), 815, 2002
  12. Kang SC, Choi YJ, Kim HZ, Kyong JB, Kim DK, Macromol. Res., 12(1), 107, 2004
  13. Yilgor I, Mcgrath E, J. Appl. Polym. Sci., 30(4), 1733, 1985
  14. Charriere-Perround E, Thomas P, Varron C, Water-borne & Solvent Based Surface Coating Resins and Their Applications Polyurethanes, Sita Technology Limited, 1999
  15. Esenson JH, Chemical Kinetics and Reaction Mechanisms, 2nd ed., Chap. 1, 1995
  16. Laidler KJ, Chemical Kinetics, 3rd ed, 1997
  17. Choi JH, Chemical Reaction Kinetics, Jayu Academy, 2000