Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.6, 727-734, 2004
Seed와 수용성 고분자를 사용한 화학적 환원법을 이용한 은 나노와이어의 합성
Synthesis of Silver Nanowires by Chemical Reduction Method with Seeds and Water-Soluble Polymers
화학적 환원법인 polyol process를 이용하여 질산은을 출발물질로 하여 capping agent의 존재하에 은 나노와이어를 합성하였다. 반응온도, polyvinylpyrrolidone(PVP)의 분자량, seed와 용매의 종류를 변수로 하여 이들 변수가 형성되는 은 나노와이어의 구조(직경, 길이 및 aspect ratio)에 미치는 영향을 연구하였다. Seed로 이용된 백금족 원소들이 핵으로서의 역할을 하고, 결정구조와 격자상수가 유사한 은 입자들과의 이종 핵생성 과정과 결정성장 과정을 수반한 다가 알코올에서의 환원반응을 거쳐 은 나노와이어가 합성되었다. 반응조건에 따라 형성되는 은 나노와이어는 직경 80 nm 이내이고, 길이는 수 μm에서 최대 50 μm이었으며, 주사전자현미경(SEM), 투과전자현미경(TEM), X-선회절 분석기(XRD)및 자외선-가시광선 분광광도계(UV-Vis spectrophotometer)를 이용하여 합성된 은 나노와이어의 형태를 조사하였다.
Silver (Ag) nanowires with five-twinned structure were synthesized by chemical reduction method through the polyol process, in the presence of capping agents. The obtained silver nanowires are well-high monodispersed with the average diameter of 80 nm and length of 50 μm. Micro-scopical structures in these nanowires could be varied from nanoparticles and nanorods to nanowires by controlling the reaction conditions such as reaction temperature, molecular weight of PVP, kinds of seed materials, and changes of liquid polyols. Nanoparticles of platinum groups play roles of seed materials for the heterogeneous nucleation and growth of silver because of their close fitness in crystal structure and lattice constant. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD) and UV-visible spectroscopy were used to characterize silver nanowires.
[References]
  1. Alivisatos AP, Science, 271(5251), 933, 1996
  2. Sun Y, Xia Y, Adv. Mater., 14(11), 833, 2002
  3. Volokitin Y, Sinzig J, deJongh LJ, Schmid G, Vargaftik MN, Moiseev II, Nature, 384(6610), 621, 2000
  4. Hu J, Odom TW, Lieber CM, Accounts Chem. Res., 32(5), 435, 1999
  5. Yang B, Kamiya S, Shimizu Y, Koshizaki N, Shimizu T, Chem. Mater., 16(14), 2826, 2004
  6. Wu YY, Yang PD, J. Am. Chem. Soc., 123(13), 3165, 2001
  7. Martin BR, Dermody DJ, Reiss BD, Fang M, Lyon LA, Natan MJ, Mallouk TE, Adv. Mater., 11(12), 1021, 1999
  8. Han YJ, Kim JM, Stucky GD, Chem. Mater., 12(8), 2068, 2000
  9. Ajayan PM, Iijima S, Nature, 361(6410), 333, 1993
  10. Braun E, Eichen Y, Sivan U, Ben-Yoseph G, Nature, 391(6669), 775, 1998
  11. Zhang D, Qi L, Ma J, Cheng H, Chem. Mater., 13(9), 2753, 2001
  12. Sun Y, Xia Y, Science, 298(5601), 2176, 2002
  13. Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M, Solid State Ion., 32(1), 198, 1989
  14. Silvert PY, Tekaiaelhsissen K, Solid State Ion., 82(1-2), 53, 1995
  15. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y, Chem. Mater., 14(11), 4736, 2002
  16. Gao Y, Jiang P, Liu DF, Yuan HJ, Yan XQ, Zhou ZP, Wang JX, Song L, Liu LF, Zhou WY, Wang G, Wang Cy, Xie SS, Zhang JM, Shen DY, J. Phys. Chem. B, 108(34), 12877, 2004
  17. Jana NR, Gearheart L, Murphy CJ, Chem. Mater., 13(7), 2313, 2001
  18. Joseph DN, Lorber B, Witz J, Theobald D, Kern D, Giege R, J. Cryst. Growth, 168(1-4), 50, 1996
  19. Sun Y, Gates B, Mayers M, Xia Y, Nano Lett., 2(2), 165, 2002
  20. Chen D, Gao L, J. Cryst. Growth, 264(1-3), 216, 2004