Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.6, 706-711, 2004
향 오일을 함유하는 다공성 PBS/PCL 마이크로캡슐의 제조 및 방출 특성
Preparation and Release Behaviors of Porous Poly(butylene succinate)/Poly(ε-caprolactone) Microcapsules Containing Fragrant Oil
향 오일을 함유하는 다공성 PBS/PCL 마이크로캡슐은 액중건조법에 의하여 제조하였고, 제조조건에 따른 마이크로캡슐의 특성과 심물질의 방출거동에 대하여 조사하였다. 제조된 마이크로캡슐의 형태와 입자크기는 각각 image analyzer와 주사전자현미경(SEM)을 이용하여 관찰하였고, 마이크로캡슐은 유화제로 젤라틴을 사용한 경우 다공성의 표면을 갖는 구형의 PBS 마이크로캡슐이 형성되었다. 또한 PCL의 함량에 따른 PBS/PCL 마이크로캡슐의 열적 특성과 방출거동은 각각 시차주사열량계(DSC)와 UV/vis. spectrophotometer에 의하여 측정하였다. DSC 결과로부터, PBS/PCL 마이크로캡슐은 56 ℃와 112 ℃에서 각각 PCL과 PBS의 용융 피크를 나타내어 두 벽재물질은 상호 간에 혼합되어 마이크로캡슐의 벽재물질로서 역할을 하는 것을 확인할 수 있었다. 또한, 마이크로캡슐의 방출 속도는 PCL 함량의 증가와 함께 감소하였고, 이는 다공성의 PBS 마이크로캡슐의 표면에 대한 PCL의 코팅효과에 의하여 마이크로캡슐로부터 향 오일의 방출은 지연되는 것으로 판단된다.
The biodegradable poly(butylene succinate) (PBS)/poly(ε-caprolactone) (PCL) microcapsules containing fragrant oil were prepared by emulsion solvent evaporation method. The prepared microcapsules were investigated in the manufacturing conditions and release behaviors. The morphology and particle size of the microcapsules were observed by image analyzer and scanning electron microscope (SEM), respectively. The porous and spherical microcapsules were formed with gelatin given in a surfactant. Also, the thermal properties and release behaviors of the microcapsules with PCL contents were determined by using the differential scanning calorimetry (DSC) and UV/vis. spectrophotometer, respectively. From the DSC results, the PBS/PCL microcapsules showed the two peaks at 56 ℃ and 112 ℃ meaning the melting points of PCL and PBS, respectively. This proved that PBS and PCL were mixed so that PBS/PCL microcapsules were composed of two wall-forming materials. The release behaviors were decreased with increasing the PCL content. It was noted that the coated PCL on the PBS microcapsule retarded the release rate of fragrant oil from microcapsules.
[References]
  1. Sosnowski S, Gadzinowski M, Slomkowski S, Macromolecules, 29(13), 4556, 1996
  2. Mehta RC, Thanoo BC, Deluca PP, J. Control. Release, 41(3), 249, 1996
  3. Stenekes RJH, Franssen O, vanBommel EMG, Crommelin DJA, Hennink WE, Int. J. Pharm., 183(1), 29, 1999
  4. Lewis DH, Chasin M, Biodegradable Polymers as Drug Delivery Systems, ed. R. Langer, Marcel Dekker, New York, 1990
  5. Kamarudin B, Hiroshi M, Taro E, Fumio Y, Keizo M, Polym. Degrad. Stabil., 62(3), 551, 1998
  6. Huang SJ, Encyclopedia of Polymer Science and Engineering, John Wiley Interscience, New York, 1985
  7. McCormick Cl, Zhang ZB, Anderson KW, J. Control. Release, 4(2), 97, 1986
  8. Sparks R, Encyclopedia of Chemical Technology, Marcel Dekker, New York, 1981
  9. Gauffre F, Roux D, Langmuir, 15(9), 3070, 1999
  10. Erdem B, Sudol ED, Dimonie VL, El-Aasser MS, J. Polym. Sci. A: Polym. Chem., 38(24), 4441, 2000
  11. Park SJ, Shin YS, Lee JR, J. Colloid Interface Sci., 241(2), 502, 2001
  12. Benoit JP, Painbeni T, Venier-Julienne MC, "Internal Morphology of Biodegradable BCNU-Loaded Microspheres," Proc. Int. Symp. Controll. Release Bioact. Mater., 23rd, 379-380, 1996
  13. Bodmeier R, McGinity JW, Int. J. Pharm., 43(2), 179, 1988
  14. Jalil R, Nixon JR, J. Microencapsul., 7(2), 297, 1990
  15. Park SJ, Kim SH, J. Colloid Interface Sci., 271(2), 336, 2004
  16. Yilmaz G, Jongboom ROJ, Feil H, Hennink WE, Carbohydr. Polym., 45(4), 403, 2001
  17. Kim A, Park SJ, Lee JR, J. Colloid Interface Sci., 197(1), 119, 1998
  18. Park SJ, Lee JR, J. Colloid Interface Sci., 219(1), 178, 1999
  19. Rabek JN, Experimental Methods in Polymer Chemistry, John Wiley & Sons, 1980
  20. Bachtsi A, Kiparissides C, J. Control. Release, 38(1), 49, 1996
  21. Hunter JR, Foundations of Colloid Science, Clarendon Press, Oxford, 1987