Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.6, 654-661, 2004
막ㆍ전극접합체에서 함수율 분포의 직접계산을 위한 수학적 모델
A Mathematical Model for Direct Calculation of Water Content Distribution in Membrane Electrode Assembly
고분자전해질형 연료전지의 핵심부품에 해당하는 막ㆍ전극접합체 내부에서 함수율의 분포를 지배방정식을 이용하여 직접 계산하였다. 전산유체역학의 개념을 이용하는 기존의 모델이 지나는 수치적인 한계를 극복하기 위하여 다층(multilayer)으로 구성되는 시스템에 내부경계조건(internal boundary condition)을 적용하여 MEA내부에서의 함수율에 관한 지배방정식을 직접 적용하였다. 내부경계조건의 도입의 타당성은 분극곡선(polarization curve)의 비교를 통해 간접적으로 검증하였으며 문헌상의 실험결과와 본 연구에서 예측된 결과를 비교하였다.
Water content is one of the critical factors in predicting physical and electrochemical phenomena in Membrane Electrode Assembly(MEA), which is a core element of polymer electrolyte fuel cell(PEFC). Water content directly affects on proton conductivity in MEA and is also a very important parameter in predicting current density distribution. To paraphrase, water content is a critical factor in predicting the performance of PEFC. Therefore, accurate prediction of water content distribution in MEA is important in PEFC modeling. In this paper, in order to directly calculate the water content distribution in MEA, we introduced a mathematical model, which is based on computational fluid dynamics, using internal boundary conditions and validated it by comparing with experimental data.
[References]
  1. Carrette L, ChemphysChem, 1, 162, 2000
  2. Carrette L, Friedrich KA, Stimming U, Fuel Cells, 1, 5, 2001
  3. High Temperature Membranes for Solid Polymer Fuel Cells, ETSU F/02-00189-REP, 2001
  4. Choi KH, Peck DH, Kim CS, Shin DR, Lee TH, J. Power Sources, 86(1-2), 197, 2000
  5. White RE, Lorimer SE, Darby R, J. Electrochem. Soc., 130, 1123, 1983
  6. Springer TE, Zawodzinski TA, Gottesfeld S, J. Electrochem. Soc., 138, 2334, 1991
  7. Dutta S, Shimpalee S, Van Zee JW, J. Appl. Electrochem., 30(2), 135, 2000
  8. Meng H, Wang CY, J. Electrochem. Soc., 151(3), A358, 2004
  9. Um S, Wang CY, J. Power Sources, 125(1), 40, 2004
  10. Um S, Wang CY, Chen CS, J. Electrochem. Soc., 147(12), 4485, 2000
  11. Berning T, Lu DM, Djilali N, J. Power Sources, 106(1-2), 284, 2002
  12. Kulikovsky AA, Fuel Cells, 1(2), 162, 2001
  13. Lee CS, Yi SC, Korean J. Chem. Eng., 21(6), 1153, 2004
  14. Patankar SV, Numerical heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, 1980
  15. Ticianelli EA, Derouin CR, Srinivasan S, J. Electroanal. Chem., 251, 275, 1988
  16. Bernadi DM, Verbrugge MW, J. Electrochem. Soc., 139(9), 2477, 1992
  17. Bird RB, Transport Phenomena, John Wiley & Sons, Inc., 1960
  18. http://mtrll.me.psu.edu/
  19. http://www.che.sc.edu/centers/PEMFC
  20. http://www.freechal.com/fuelcell