Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.6, 646-653, 2004
골재소성용 로터리 킬른의 운전조건변화에 따른 현상예측을 위한 수학적 모델링
A Mathematical Modeling for Prediction of Phenomena in Rotary Kiln with Various Operating Conditions
본 연구에서는 생산량이 100 m3/day인 Rotary Kiln식 소성로를 대상으로 노내의 온도분포 및 골재의 소성 진행 정도를 해석하기 위하여 수학적 모델링이 수행되었다. 막대한 양의 에너지를 소비하는 kiln 조업에서 열효율을 향상시키기 위해서는 조업조건에 따른 가스, 벽, 물질의 온도분포를 예측할 수 있어야 하지만 실험적으로 관찰, 측정하는 것은 현실적으로 매우 어렵다. 본 연구에서는 전산유체역학을 이용하여 3차원 모델을 설정한 후 물질수지와 에너지 수지를 고려한 수학적 모델을 적용하여, kiln의 회전수, 기울기, 연소공기의 온도를 주요 변수로 고려하여 노내의 온도분포 및 골재의 온도를 예측하였다.
Rotary kilns are employed by industrial site to carry out a wide variety of material processings; calcining limestone, reduction of oxide ore,etc. In this study a mathematical model was developed to predict heat transfer from the freeboard gas to the bed of a rotary kiln. This presents a three-dimensional mathematical model to describe and simulate the calcination of solid bed in a rotary kiln. The model comprises conventional differential equations derived from the principles of conservation of mass and energy and this can be used to predict the temperature profiles of the solid bed, the gas phase and inner wall of the kiln along the length of the kiln axis and in radial direction. The major parameters considered here are kiln rotation rate(rpm), filling ratio of the solid bed, burner injection-temperature. The results from the simulation showed reasonable agreement with experimental results available in the literature.
[References]
  1. Martins MA, Oliveira LS, ZKG Int., 55(4), 76, 2002
  2. Martins MA, Oliverra LS, Fuel, 80, 1611, 2001
  3. Lee MS, J. Korea Inst. Met. & Mater., 35(12), 1724, 1997
  4. Boateng AA, Barr PV, Int. J. Heat Mass Transf., 39(10), 2131, 1996
  5. Watkinson AP, Brimacombe JK, Metall. Trans. B, 13(B), 369, 1982
  6. Yang Y, Rakhorst J, Analysis of Gas Flow and Mixing in a rotary Kiln Waste Incinerator," Second International Conference on CFD in the Minerals and Process Industries CSIRO, 443, 1999
  7. Hills AWD, Chem. Eng. Sci., 23(2), 297, 1968
  8. Versteeg GF, Kuipers JAM, "Modeling of Rotary Kilns," University of Twente, 2001
  9. Roh SD, Kim SW, Jang WH, Shon SS, Lim IS, Cho, Appl. Chem., 2(2), 1068, 1998