Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.4, 541-549, 2000
고온건식 탈황을 위한 굴껍질의 소성 및 황화반응 특성
Calcination and Sulfation Reactivity of Oyster Shell for Dry, High-Temperature Desulfurization
폐기물로 발생되는 굴껍질로 고온 건식 탈황제로 사용하기 위한 기초반응으로 비등온 소성반응과 등온 황화반응 실험이 열중량분석기에서 이루어졌다. 굴껍질에 대한 물리.화학적 특성을 분석하였고, 질소 분위기와 CO2분위기에 가열속도를 변화시키면서 950℃ 까지 비등온 소성 반응 실험을 하엿다. 황화반응은 500-950℃의 등온조건, SO2농도 0.2-1%, O2농도 0.7%-5.0% 변화 조건에서 실험을 하였다. 소성반응 실험치를 Kissinger, Freeman-Chatterjee-Conard, Achar법을 적용시켜 해석한 결과 활성화에너지는 170.1-235.5 kJ/g-mol로 나타났고, 고체 반응물에 대한 반응차수는 0.5-0.76으로 구하여졌다. 황화 반응 실험에서 활성화에너지는 550-650℃영역에서 24.4kJ/g-mol, 750-950℃영역에서 31.5 kJ/g-mol을 얻었고, SO2농도와 O2농도에 대한 반응차수는 각각 0.38, 0차로 나타났다. 전체 소성 굴껍질 중 황화반응 전환율은 최대 80%이었다.
Nonisothermal calcination and isothermal sulfation reactions of wasted oyster shell were conducted in the thermogravimetic analyzer in order to use as the sorbents for dry, high-temperature desulfurization system, The physical and chemical characteristics of sample were analyzed. Nonisothermal calcination reaction were conducted at the various heating rate under flowing nitrogen and CO2gases. Sulfation reactions were conducted with respect to various factors:500-950℃ isothermal reaction temperature, 0.2-1% SO2 concentration, and 0.7-5.0% O2 concentration. Kissinger, Freeman-Carroll, Chatterjee-Conard and Achar method were used to analyze the calcination reactivity. The activation energy for the calcination reaction was 170.1 to 235.5 kJ/g-mol, and the reaction order for solid reactant was about 0.5 to 0.76. Measured activation energy for sulfation reaction was 24.4 kJ/g-mol in the temperature region from 550℃ to 650℃, whereas 31.5 kJ/g-mol in the range from 750℃ to 950℃. The reaction orders with respcet to SO2 and O2 concentration were 1.38 and 0, respectively. Maximum % conversion of the sulfaction reaction of the calcined oyster shell was shown to be over 80%.
[References]
  1. Watanabe T, Hayashi M, Takahashi A, Matsuda H, Hasatani M, A part of the Research Program (NEDO Japan), 1993
  2. Bak YC, Energy Eng. J., 7, 216, 1998
  3. Lee YW, Han KH, Park YS, Shon JE, Bak YC, J. KSEE, 16, 157, 1994
  4. Kang SW, Oh SC, Lee HP, Kim HT, Yoo KO, HWAHAK KONGHAK, 37(2), 250, 1999
  5. Jung JH, Shon BH, Kim YS, Lee HK, Oh KJ, J. KSEE, 21, 53, 1999
  6. KS, chemical: L-9003, 1996
  7. Dennis JS, Hyahurst AN, Chem. Eng. Sci., 42, 2361, 1987
  8. Jung BJ, Park YJ, HWAHAK KONGHAK, 24(3), 203, 1986
  9. Borgwart RH, Environ. Sci. Technol., 4, 59, 1970
  10. KIM H, PARK D, Korean J. Chem. Eng., 4(2), 143, 1987
  11. Kim YS, Ph.D. Dissertation, Pusan National Univ., Pusan, Korea, 1999
  12. Choi JH, Kim SS, Cho SW, Cho JG, J. KSEE, 21, 507, 1999
  13. Kim SS, Choi JH, Cho SW, Park MK, Theor. Appl. Chem. Eng., 3, 2629, 1997
  14. Hong SC, Lee JI, Doh DS, J. KSEE, 17, 461, 1995
  15. Lee DH, Lee YW, Jin GT, J. KSEE, 21, 131, 1999
  16. Ingraham TR, Marrier P, Can. J. Chem. Eng., 170, 1963
  17. Darroudi T, Seacy AW, J. Phys. Chem., 85, 3971, 1981
  18. Kang SK, Ph.D. Dissertation, KAIST, Taejon, Korea, 1991
  19. Kissinger HE, Anal. Chem., 21, 1702, 1987
  20. Freeman ES, Carroll B, J. Phys. Chem., 62, 394, 1958
  21. Chatterjee PK, Conrad CM, J. Polym. Sci. A: Polym. Chem., 6, 3217, 1968
  22. Achar BNN, Brindley GW, Sharp JH, Proc. Ini. Clay Conf. Jerusalem, 1, 67, 1966
  23. Gallagher PK, Johnson DW, Thermo-chimica Acta, 76, 1973
  24. Borgwardt RH, Harvey RD, Environ. Sci. Technol., 6, 350, 1972
  25. Hartman M, Coughlin RW, AIChE J., 22, 490, 1976
  26. Hatfield JD, Dim YK, Mullins RC, McClellan GH, "Investigation of the reactiveties of limestone to remove sulfur dioxide from flue gas," NTIS Publication No 202 407, 1970
  27. Kocafe D, Karman D, Steward FR, Can. J. Chem. Eng., 63, 1985
  28. Marsh DW, Ulrichson DL, Chem. Eng. Sci., 40, 423, 1985
  29. Kojima T, Take K, Kunii D, Furusawa T, J. Chem. Eng. Jpn., 18, 432, 1985
  30. Alshawabkeh A, Lin SY, Matsuda H, Hasatani M, J. Chem. Eng. Jpn., 28(6), 689, 1995