Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.4, 536-540, 2000
TiO2/UV를 이용한 SO2와 NOχ의 동시처리
Simultaneous Treatment of SO2 and NOχ using TiO2/UV System
SO2와 NOχ의 동시처리를 위한 최적의 TiO2/UV 시스템 개발을 위하여 여러 가지 변수별로 실험을 수행하였다. 반응기 유형에 따른 제거효율을 보면 1 kW UV-A tubular형 반응기가 약 365 nm의 장파장임에도 불구하고 램프 출력이 강하기 때문에 20 W UV-C(약 250 nm) annular형보다 더 높은 제거효율을 보였다. 온도에 따른 제거효율을 관찰한 결과 NOχ의 경우 초기농도 150-200 ppm의 경우를 제외하고는 이 보다 낮은 농도범위에서 온도에 상관없이 아주 좋은 제거효율을 보였으나, SO2의 경우 온도가 증가할수록 제거효율이 감소하는 경향을 보였다. 첨가제로 산소를 사용하는 경우가 공기의 경우보다 더 높은 제거효율을 보였는데 이는 공기 중의 질소성분이 반응에 참여하여 일부 NOχ를 생성시키는 것으로 확인 되었다. 반응기 내에서의 체류시간이 길어질수록 좋은 제거효율을 보였으며, 같은 체류시간일 겨우 반응기의 용량에 따른 제거효율의 변화는 거의 없는 결과를 볼 수 있었다. 이러한 결과를 실제 시스템에 효과적으로 적용할 수 있는 R값을 정의, 제시하였다.
In this study, experiments with various parameters have been conducted to design the optimun TiO2/UV system for the simultaneous removal of SO2 and NOχ. Removal rate with TiO2 thin film tubular type reactor combined with a 1kW UV-A lamp(365 nm) was higher than that with the annular type and a 20 W UV-C lamp(250 nm) due to higher intensity. In terms of reaction temperature, while NOχ was removed constistently well except for relatively high initial concentration of 150-200 ppm, removal rate of SO2 was decreased as reaction temperature increased. The effect of additive gas on the removal rate indicated that oxygen was better than air becaure N2 in air was involved in the reaction with 0 species to produce NOχ. Increased residence time in the reactor showed the positive effect on the removal rate, and with the same residence time reactor size did not make a difference. All these results were exprssed by the defined factor R which could be effectively applied to the real system.
[References]
  1. http://www.ldc.lu.se/iiiee/EMISSIONS/SOX/SOX.html
  2. Macneil JH, Berseth PA, Westwood G, Trogler WC, Environ. Sci. Technol., 32, 876, 1998
  3. Blanco J, Bahamonde A, Alvarez E, Avila P, Catal. Today, 42(1-2), 85, 1998
  4. Choi H, Ham SW, Nam IS, Kim YG, Sim JH, Ha BH, HWAHAK KONGHAK, 34(1), 91, 1996
  5. Kumthekar MW, Ozkan US, J. Catal., 171(1), 54, 1997
  6. Shen CH, Rochelle GT, Environ. Sci. Technol., 32, 1994, 1998
  7. Rubel AM, Stencel JM, Fuel, 76(6), 521, 1997
  8. Mok YS, Ham SW, Nam IS, Plasma Chem. Plasma Process., 18(4), 535, 1998
  9. van Veldhuizen EM, Zhou LM, Rutgers WR, Plasma Chem. Plasma Process., 18(1), 91, 1998
  10. Lee HK, Cho HD, Kim SH, HWAHAK KONGHAK, 32(3), 273, 1994
  11. Korea Patent: Construction of Tubular Photocatalytic Reactor with the Lamp Liserted Coaxially, 1999, 1999
  12. Korea Patent: Photocatalyst-coated Thin Film Photoreactor System for the Simultaneous or the Respective Treatment of SOx and NOx, 1999, 1999