Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.4, 479-484, 2000
고압에서 Poly(butyl methacrylate)-CO2-Butyl methacrylate계의 상거동에 관한 공용매의 영향
Cosolvent Effect on Phase Behavior of Poly(butyl methacrylate)-CO2-Butyl Methacrylate System at High Pressure
본 연구에서는 삼성분계인 poly(butyl methacrylate)[PBMA]-CO2-butyl methacrylate[BMA]혼합물에 대해 온도 36-234˚C, 압력 2,000bar까지 실험을 수행하여 상거동 자료를 얻었으며, 이때 공용매인 BMA 농도는 7.9, 16.2, 29.8 및 40.7wt%이었다. 공용매의 농도가 증가함에 따라 음의 기울기에서 양의 기울기로 변화되는 과정을 나타내었다. 그리고 PBMA-CO2 용액에 BMA의 농도를 55.0 wt%로 첨가하여 상거동 변화를 나타내었으며, BMA의 농도가 55.0 wt% 일 때 삼상(LLV)이 나타남을 보였다. 또한 PBMA 고분자는 CO22-BMA 혼합물에 대해 압력-조성관계를 35.0, 75.0 및 110.0℃에서 실험하였으며, 이때 압력은 19-158 bar 범위였다. CO2-BAM계에 대해 동일한 압력에서 CO2의 용해도는 온도가 증가함에 따라 감소함을 보였다. CO2-BMA 계의 실험결과는 Peng-Robinson과 statistical associating fluid theory[SAFT]상태방정식에 모델링하였다. 온도에 독립적인 파라미터를 이용하여 두 상태식에 의해 계산한 계산치와 실험치를 비교하여 나타내었다.
Phase behavior data for ternary poly(methyl methacrylate)[PBMA]-CO2-butyl methacrylate[BMA] are measured in the temperature range of 36 to 234℃, to pressure as high as 2,000 bar, and with cosolvent concentrations of 7.9, 16.2, 29.8, and 40.7wt%. This system changes the pressure-temperature slope of the phase behavior curves from negative to positive as the cosolvent concentration increases. The addition of 55.0 wt% BMA to PBMA- CO2 shows the change of LLV phase behavior. The PBMA-pure CO2 system dissolves at 243.3℃ and 1,419 bar. Pressure-composition isotherms are also shown for the CO2-BMA at 35.0, 75.0, and 105℃ and in pressure from 19 to 158 bar. The solubility CO2 for the CO2-BMA system decreases as the temperature increases at constant pressure. The experimental reuslts for the CO2-BMA system are modeled using Peng-Robinson and statistical associating fluid theory(SAFT)equation of state with temperature-independent parameters. The experimental data was compared with the calculated data by the Peng-Robinson and the SAFT equation of state for the CO2-BMA system.
[References]
  1. DeSimone JM, Guan Z, Elsbernd CS, Science, 257, 945, 1992
  2. Buback M, Droge T, Macromol. Chem. Phys., 200, 256, 1999
  3. Canelas D, DeSimone JM, Adv. Polym. Sci., 133, 103, 1997
  4. McHugh MA, Rindfleisch F, Kuntz PT, Schmaltz C, Buback M, Polymer, 39(24), 6049, 1998
  5. McHugh MA, Guckes TL, Macromolecules, 18, 674, 1985
  6. Pan C, Radosz M, Ind. Eng. Chem. Res., 38(7), 2842, 1999
  7. Kinzl M, Luft G, Adidharma H, Radosz M, Ind. Eng. Chem. Res., pending, 1999
  8. Cowie JMG, McEwen IJ, J. Chem. Soc.-Faraday Trans., 70, 171, 1974
  9. Wolf BA, Blaum G, J. Polym. Sci. B: Polym. Phys., 13, 1115, 1975
  10. Wolf BA, Blaum G, Macromol. Chem., 177, 1073, 1976
  11. Lora M, McHugh MA, Fluid Phase Equilib., 157(2), 285, 1999
  12. Chen AQ, Radosz M, J. Chem. Eng. Data, 44, 854, 1999
  13. Rindfleisch F, DiNoia TP, McHugh MA, J. Phys. Chem., 100(38), 15581, 1996
  14. Byun HS, Hasch BM, Mchugh MA, Mahling FO, Busch M, Buback M, Macromolecules, 29(5), 1625, 1996
  15. Byun HS, Hasch BM, McHugh MA, Fluid Phase Equilib., 115(1-2), 179, 1996
  16. Byun HS, Jeon NS, Fluid Phase Equilib., accepted, 1999
  17. Reid RC, Prausnitz JM, Polling BE, "The Properties of Gases and Liquids," 4th edn., McGraw-Hill, New York, NY, 1987
  18. Vargaftik NB, "Handbook of Physical Properties of Liquid and Gases," Springer-Verlag, Berlin, 1983
  19. Daubert TE, Danner RP, Data Compilation of Properties of Pure Compounds, Part 1,2,3, and 4, DIPPR Project, AIChE, New York, NY (1985-1992)
  20. McHugh MA, Krukonis VJ, "Supercritical Fluid Extraction: Principles and Practice," 2nd edn., Stoneham, Butterworth, MA, 1994
  21. Scott RL, vanKonynenburg PB, Discuss. Faraday Soc., 49, 87, 1970
  22. Kirby CF, McHugh MA, Chem. Rev., 99(2), 565, 1999
  23. Peng DY, Robinson DB, Ind. Eng. Chem. Res. Fundam., 15, 59, 1976
  24. Huang SH, Radosz M, Ind. Eng. Chem. Res., 29, 2284, 1990
  25. Huang SH, Radosz M, Ind. Eng. Chem. Res., 30, 1994, 1991
  26. Lora M, Rindfleisch F, McHugh MA, J. Appl. Polym. Sci., 73(10), 1979, 1999