Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.3, 423-428, 2000
흡착성 유전체의 방전 플라즈마에 의한 톨루엔 분해에 관한 연구
Study on the Toluene Decomposition using an Adsorptive Dielectric Discharge Plasma
저농도의 유해가스 처리목적으로 많이 연구되고 있는 저온플라즈마 기술을 이용하여 대기를 오염시키는 VOC의 일종인 톨루엔을 분해하는 연구를 수행하였다. 사용한 플라즈마는 일반적인 교류를 전원으로 사용하는 유전체 방전 플라즈마이며, 관형의 유전체 반응기에 흡착성이 좋은 다공성의 γ-Al3O3를 충진해서 사용하였다. 충진한 유전체의 흡착성이 톨루엔의 분해효율에 미치는 영향을 조사하기 위해서 흡착성이 없는 glass bead를 γ-Al3O3와 비교하여 실험하였다. 반응기의 인가전압은 19kV, 16kV로 하였고, 반응기 온도는 25℃, 60℃, 100℃로 바꾸면서 실험하였으며 반응속도 및 활성화 에너지를 고찰하였다. γ-Al3O3가 glass bead보다 높은 분해능을 나타내었고, 온도가 높을수록 분해율이 높게 나타났다. 아울러 실험결과를 유전율 측면에서도 살펴 보았으며 유전율이 높을수록 좋은 톨루엔 분해성능을 나타내었다.
Non-thermal plasma technologies were known to be effective for decomposition of dilute pollutant gases. In the present study the dielectric discharge plasma was examined in order to decompose toluene vapor, a kind of air pollutant VOCs. The dielectric barrier discharge plasma using the conventional AC as an electric power source was generated inside the tubular reactor in which the porous γ-Al3O3 beads were packed. In order to investigate the adsorptive effect of the packed dielectrics the non-porous glass bead was also examined and compared with the γ-Al3O3 for the abatement of toluene vapor. Experiments were carried out at the electric voltage of 16 kV and 19 kV and at the temperature of 25℃, 60℃, and 100℃ respectively. The kinetic velocity and activation energy of toluene decomposition reaction was studied in the γ-Al3O3 beads packed reactor. The γ-Al3O3 bead showed better performance for toluene decomposition than the glass bead. AS the reactor temperature rising, the toluene decomposition rate also increased. Additionally the effect of dielectric constant of the packed dielectric was studied. The dielectric of higher dielectric constant showed better performance than that of lower one.
[References]
  1. Song YH, Shin WH, Choi YS, Kim SJ, J. Adv. Oxid. Technol., 2(2), 268, 1997
  2. Ham SW, Park HH, Mok YS, HWAHAK KONGHAK, 37(5), 759, 1999
  3. Jassal AS, Worth W, Elrod S, Modrey L, Technology Transfer 97023244-ENG, SEMATECH, 2, 1997
  4. Hollahan JR, Bell AT, "Techniques and Applications of Plasma Chemistry," John Wliey & Sons, 1, 1974
  5. Vercammen KLL, Berezin AA, Lox F, Chang J, J. Adv. Oxid. Technol., 2(2), 312, 1997
  6. Futamura S, Yamamoto T, IEEE Trans. Ind. Appl., 33(2), 447, 1997
  7. Yamamoto T, Ben W, Jang I, IEEE Trans. Ind. Appl., 35(4), 736, 1999
  8. Yamamoto T, Chang J, Kohno H, Honda S, Shibuya A, J. Adv. Oxid. Technol., 1(1), 67, 1996
  9. Smulders E, Heesch B, Paasen S, IEEE Trans. Plasma Sci., 26(5), 1476, 1998
  10. Chon H, "Catalysis Introduction," 3(rd) ed., Hanrimwon, 202, 1995