Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.2, 304-309, 2000
석탄과 폐타이어 공동액화 반응특성 연구
A Study on the Reaction Characteristics of the Coal/Waste Tire Coliquefaciton
본 연구에서는 Alaska 산 아역청탄과 폐타이어의 공동액화시 상승효과 및 반응기구를 규명하고자 하였다. 공동액화는 370℃, 410℃, 450℃에서 진행되었으며 tetralin이 첨가되지 않았을 때 폐타이어 첨가로 인한 상승효과(각각 13%, 8%, 5%)를 관찰할 수 있었다. 또한 450℃에서는 30분간 공동액화시 tetralin 4ml가 첨가된 석탄과 폐타이어의 공동액화는 석탄과 폐타이어의 단독액화에 비해 각각 22%, 10%의 상승효과를 가져왔다. 또한 공동액화시 석탄액화는 tetralin과 폐타이어에 의한 수소공여로 촉진되는 반응모델로 모사되었으며, 폐타이어 경우는 석탄과 폐타이어 자체에 의한 액화반응모델로 모사되었다. 본 모델에 의한 결과는 공동액화 실험 온도범위내에서 실험결과 및 Arrhenius 이론에 잘 부합하였다. 반응온도가 370℃에서 450℃로 상승함에 따라 석탄 단위질량당 액화에 소요되는 tetralin의 변화량(β)은 0.71에서 1.63으로 증가하였으며 이는 tetralin이 애고하유의 저분자화에 기여하는 것으로 GPC 분석 결과 확인되었다.
Experiments have been conducted to investigate synergistic effect and mechanism of the Alaskan subbitiuminous coal and waste tire coliquefaction. According to test without etralin at 370℃, 410℃, 450℃ and when tetralin is not added, addition of waste tire to coal gave synergistic effect of 13%, 8%, 5% respecitively. Coliquefaction of coal and waste tire gave synergistic effect of 22%, and 10% respectively compared to independent liquefactions of coal or waste tire at 450℃. To analyse coliquefaction mechanisms, the liquefaction model for coal were developed with effects of tetralin and waste tire, and the liquefaction model for waste tire were developed with effects of coal and waste tire. When the models were simulated to fit coliquefaction results, those represented results and Arrhenius theory successfully. As reaction temperature increased from 370℃ to 450℃, the amount of tetralin needed to liquefy unit mass of coal increased from 0.71 to 1.63. This indicated that more tetralin was needed to lower the molecular weight of liquefied products at high temperatures as recognized by the GPC analysis.
[References]
  1. Orr EC, Tuntawiroon W, Anderson LL, Eyring EM, ACS Fuel Chem. Div. Preprints, 39, 1065, 1994
  2. Orr EC, Tuntawiroon W, Anderson LL, Eyring EM, Burghard JA, Fuel Proc. Tech., 47, 245, 1996
  3. Gatsis JG, Nelson BJ, Humbach MJ, Contractor's Review Meeting, Pittsburgh, October 6, 1987
  4. Nafsis DA, Humbach MJ, Gatsis JG, Final Report, DOE/PC/70002-T6, 1988
  5. Kim SW, The 3th Waste Management and Recycling Workshop, KIGAM, 103, 1998
  6. Farcasiu M, Smith C, Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem., 37, 1992
  7. Liu Z, Zondlo JW, Dabyburjor DB, Energy Fuels, 8(3), 607, 1994
  8. Gra D, Tomlinson G, Proceedings of the ACS Division of Fuel Chemistry, Anaheim, CA; American Chemical Society; Washington, DC, Vol. 40, No. 1, 1995
  9. Mastral AM, Murillo R, Perezsurio MJ, Callen M, Energy Fuels, 10(4), 941, 1996
  10. Han C, Kim HS, Yun WL, Lee IC, Energy R. D., 15, 1993
  11. Marquardt DW, J. SIAM, 11(2), 431, 1963
  12. Sharma RK, Dadyburjor DB, Zondlo JW, Liu Z, Stiller AH, Am. Chem. Soc. Div. Fuel Chem., 40, 1, 1995
  13. Liu ZY, Zondlo JW, Dadyburjor DB, Energy Fuels, 9(4), 673, 1995
  14. Sharma RK, Yang JL, Zondlo JW, Dadyburjor DB, Catal. Today, 40(4), 307, 1998