Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.2, 204-209, 2000
초임계유체를 이용한 RESS공정에서 생성된 미분말의 특성
Characteristics of Fine Particles Prepared by RESS Process Utilizing Supercritical Fluid
초임계유체를 재료분야에 응용하는 연구 중에 RESS(Rapid Expansion of Supercritical Fluid Solutions) 공정은 기존의 방법과는 달리 입경 및 입경분포가 작은 입자들을 용이하게 얻을 수 있을 뿐만 아니라 생성된 입자에 잔류 용매가 존재하지 않는 유망한 공정이라 할 수 있다. 본 연구에서는 초임계유체로 탄산가스를 사용하고 연구 대상 물질로 2-naphthol을 선택 하였으며 RESS 공정에서 여러 변수들의 영향을 고찰하였다. 실험변수는 capillary의 직경 및 길이, extractor 온도와 압력, preheater 온도, crystallizer 압력 등이며 이들이 분말의 직경 및 분포에 어떤 영향을 미치는지 연구하였다. 실험결과 extractor 의 압력과 온도가 증가할수록 입자의 크기가 감소하였으며 preheater의 온도에는 비교적 insensitive 하였다. Crystallizer 의 압력을 증가시키면 입자의 크기가 감소하였으며, Capillary dimension의 영향을 보면 capillary의 직경이 일정할 때 capillary의 길이가 증가할수록 입자의 크기가 감소하였으며, 길이가 일정한 경우 capillary 직경이 커질수록 입자의 크기가 증가하였다. 또한 각 실험조건에서 얻은 입자들의 직경과 과포화도를 도시한 결과 아주 좋은 상관관계가 있음을 알 수 있었다.
Among materials-related applications of supercritical fluid it may be said that RESS(Rapid Expansion of Supercritical Fluid Solutions) process is promising to produce particles which have small sizes and narrow size distributions without residual solvent in the produced particles. In this work supercritical carbon dioxide and 2-naphthol have been selected and the effects of various experimental variables in the RESS process are investigated. The experimental variables include capillary diameter and length, extractor temperature and pressure, crystallizer pressure and preheater temperature. The results show that the diameter of the particle becomes larger with increasing extractor pressure and temperature although the particles size are relatively insensitive to the temperature of preheater. Larger particles can be obtained with increasing crystallizer pressure. In terms of the effects of capillary dimension the particle size decreases with increasing capillary length, while ti increases with increasing capillary diameter. Moreover, when the particle diameter is related to the degree of supersaturation, we can get excellent correlations between them.
[References]
  1. Chang KH, Bae HK, Shim JJ, Korean J. Chem. Eng., 13(3), 310, 1996
  2. Ryu YK, Roh DS, Lee CH, HWAHAK KONGHAK, 36(1), 56, 1998
  3. Joung SN, Ahn SH, Yoo KP, Noh MJ, Han JH, Han SH, HWAHAK KONGHAK, 36(1), 92, 1998
  4. Kim SY, Lee KH, Bae SY, Yoo KP, HWAHAK KONGHAK, 36(2), 293, 1998
  5. Bae HK, Lee JY, HWAHAK KONGHAK, 36(4), 584, 1998
  6. Krukonis VJ, "Supercritical Fluid Nucleation of Difficult to Comminute Solids," presented at the AIChE Annual Meeting, San Francisco, November, 1984
  7. Larson KA, King ML, Biotechnol. Prog., 2(2), 73, 1986
  8. Matson DW, Petersen RC, Smith RD, Adv. Ceram. Mater., 1(3), 242, 1986
  9. Matson DW, Petersen RC, Smith RD, Mater. Lett., 4, 429, 1986
  10. Matson DW, Fulton JL, Petersen RC, Smith RD, Ind. Eng. Chem. Res., 26, 2298, 1987
  11. Petersen RC, Matson DW, Smith RD, J. Am. Chem. Soc., 108, 2100, 1986
  12. Mohamed RS, Halverson DS, Debenedetti PG, Prud'homme RK, ACS Symp. Ser., 406, 355, 1989
  13. Mohamed RS, Debenedetti PG, Prud'homme RK, AIChE J., 35(2), 325, 1989
  14. Tavana A, Randolph AD, AIChE J., 35(10), 1625, 1989
  15. Chang CJ, Randolph AD, AIChE J., 35(11), 1876, 1989
  16. Reverchon E, Donsi G, Gorgoglione D, J. Supercrit. Fluids, 6(4), 241, 1993
  17. Domingo C, Wubbolts FE, Rodriguez-Clemente R, van Rosmalen GM, "Rapid Expansion of Supercritical Ternary Systems: Solute+Cosolute+Co2," Proceeding of 4th ISSF, vol A, 59, 1997
  18. Nagahama K, Liu GT, "Supercritical Fluid Crystallization of Solid Solution," Proceeding of 4th ISSF, vol A, 43, 1997
  19. Dobbs JM, Ph.D. Dissertation, University of Texas, Austin, Texas, 1986
  20. Gallagher PM, Coffey MP, Krukonis VJ, Klasutis N, ACS Symp. Ser., 406, 334, 1989