Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.2, 179-185, 2000
비이온 계면활성제를 이용한 원유 중의 황화합물 가용화에 관한 연구
Solubilization of Sulfur Compounds in the Crude Oil by Nonionic Surfactants
본 연구에서는 가용화제로 polyoxyethylene(POE)계 비이온 계면활성제를 사용하여 원유 중에 포함되어 있는 황화합물의 가용화도를 X-ray spectrometer를 이용하여 측정하였다. 실험에서 사용한 비이온 계면활성제들 중에서는 가장 소수성 계면활성제의 가용화력이 가장 우수하였으며, 온도 증가에 따라 가용화도가 증가함을 알 수있었고 1wt% 이상의 계면활성제 농도 조건에서 가용화도가 급격히 증가함을 알 수 있었다. 특히 동일한 조건에서 2차 알코올 결합을 가진 Tergitol series 계면활성제는 1차 알코올 결합을 가진 Neodol series 계면활성제와 비료하여 가용화도가 우수하였으며, cosurfactant 로서 알코올을 첨가하거나 전해질을 첨가할 경우 모두 황화합물의 가용화도가 증가함을 알 수 있었다. 원유 양을 증가시켜 가용화 실험을 수행한 결과, 계면활성제의 오일 상으로의 분배(partitioning)형상은 계면활성제가 소수성일수록 또는 온도가 증가함에 따라 더욱 두드러지게 나타났으며, 탈황 미생물 성장 영향 실험에서 계면활성제 첨가가 탈황 미생물의 성장에 큰 영향을 끼치지 않음을 확인할 수 있었다.
In this study, polyoxyethylene(POE) nonionic surfactants were used in order to enhance the solubilization of sulfur compounds contained in the crude oil and the solubilized sulfur contents in the aqueous surfactant solutions were measured by X-ray sulfur spectrometer. The most hydrophobic surfactant among used during this study showed the maximum solubilization capacity for the sulfur compounds in the crude oil and the solubilization of sulfur compounds was founds to be increased with temperature and to be abruptly increased at above 1wt% surfactant solutions. It was found that Tergitol series surfactants showed higher solubilizing capacity then Neodol series surfactants presumably due to the disruption of the regular packing in the hydrocarbon region of the surfactant aggregates. The addition of a cosurfactant such as alcohol and/or an electrolyte increased the solubilization of sulfur compounds in the crude oil. It was found that partitioning phenomena were shown to be significant with an hydrophobic surfactant at high temperature and the growth of sulfur reducing microorganisms was not greatly affected by the addition of nonionic surfactants.
[References]
  1. Malik KA, "Microbial Removal of Organic Sulphur from Crude Oil and Environment: some New Perspective," Process Biochemistry, September, 10, 1978
  2. Monticello DJ, "Biocatalytic Desulfurization," Hydrocarbon Processing, February, 1994
  3. Sublette KL, Gwozdz KJ, Biochem. Biotechnol., 28-29, 635, 1991
  4. Kwon TW, Chem. World, 35(11), 24, 1995
  5. Camphell IM, "Catching the Fossil Fuel Biodesulfurization Wave," Chemtech, October, 43, 1993
  6. Chic YC, Chen LJ, Pien WI, Colloids Surf., 34, 23, 1988
  7. Bhat SN, Smith GA, Tucker EE, Christian SD, Scamehorn JF, Ind. Eng. Chem. Res., 26, 1217, 1987
  8. Abe M, Mizuguchi K, Kondo Y, Ogino K, Uchiyama H, Scamehorn JF, Tucker EE, Christian S, J. Colloid Interface Sci., 160, 16, 1993
  9. Moroi Y, Morisue T, Takeuchi M, Shibata O, Colloids Surf. A: Physicochem. Eng. Asp., 109, 201, 1996
  10. Kile DE, Chiou CT, Environ. Sci. Technol., 23, 832, 1989
  11. Saito S, J. Colloid Interface Sci., 158, 77, 1993
  12. Tokuoka Y, Uchiyama H, Abe M, Ogino K, J. Colloid Interface Sci., 152, 402, 1992
  13. Chiu CT, Kile DE, Rutherford DW, Environ. Sci. Technol., 25, 660, 1991
  14. Miller CA, Neogi P, "Interfacial Phenomena," Marcel Dekker, Inc., 140-155, 160-168
  15. Schick MJ, "Nonionic Surfactants," Marcel Dekker, Inc., 124-157, 297-368
  16. Pinal R, Suresh P, Rao C, Linda SL, Patricia VC, Environ. Sci. Technol., 24, 639, 1990
  17. Klevens HB, "Effect of Electroytes Upon the Solubilization of Hydrocarbons and Polar Compounds,", 72, 1950
  18. Lee YS, Fine Chemistry Symposium-Basic Property of Surfactant, 23, 1992
  19. Tungsubutra T, Ph.D. Thesis, Rice Univ., Houston, Texas, 1994
  20. Lim JC, Miller CA, Yang JH, Colloids Surf., 66, 45, 1992
  21. Kim BH, "Microbial Physiology," 2(nd) ed., Academy Book, 13, 1996