Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.2, 149-154, 2000
Glassy Carbon 섬유 다발체 전극에서 질산의 전기화학적 산화/환원 거동 연구
A Study on Electrochemical Redox Behavior of Nitric Acid by Using a Glassy Carbon Fiber Column Electrode System
Glassy carbon 섬유 다발체 전극을 이용한 질산의 전기화학적 산화/환원 거동 연구를 수행하였으며, 질산의 분해 반응기구를 고찰하였다. 질산농도가 2.0M 이하에서는 질산의 전기화학적 산화/환원이 일어나지 않고 질산 농도 2.0M 이상에는 질산의 환원반응이 느려, 질산 용액이 전극과 환원전위에서 충분한 접촉이 이루어진 후에 아질산이 생성되었다. 질산 농도 2.0M 이상에서 생성된 아질산은 환원 전위에서 급격한 자동촉매 반응에 의한 대단히 빠른 환원분해 반응을 통해 NOx으로 환원되었다. 아질산은 sulfamic acid에 의해 효과적으로 분해되었고 질산 3.5M에서는 전해 환원반응에 의해 생성된 아질산의 완전한 분해를 위해 sulfamic acid 농도가 최소한 0.05M 이상이 되어야 함을 알 수 있었다.
Electrochemical redox behaviors of nitric acid were studied by using a glassy carbon fiber column electrode system, and its reaction mechanism were analyzed in several ways. The electrochemical reaction in less than 2.0M nitric acid was not observed, but in more than 2.0M nitric acid, the reduction rate of nitric acid to produce nitrous acid was slow so that the nitric acid solution had to be contacted enough with electrode in order to observe a apparent reduction current of nitric acid to nitrous acid. The nitrous acid generated in more than 2.0M nitric acid was rapidly and easily reduced to NOx through an auto catalytic reaction. Sulfamic acid was confirmed to be effective to destroy the nitrous acid. The sulfamic acid of at least 0.05M was necessary to remove the nitrous acid generated in 3.5M nitric acid.
[References]
  1. Yoshida Z, Tachikawa E, Nucl. Eng. Jpn., 38, 48, 1992
  2. Couper AM, Pletcher D, Walsh FC, Chem. Rev., 90, 837, 1990
  3. Stock JT, Orna MV, "Electrochemistry, Past and Present," ACS Symposium series 390, American Chemical Society, Washington DC, 1989
  4. Petrich G, Galla U, Goldacker H, Schmieder H, Chem. Eng. Sci., 41(4), 981, 1986
  5. Feess H, Wendt H, Chem. Ing. Tech., 53(10), 808, 1981
  6. Kim KW, Lee EH, Yoo JH, Sep. Sci. Technol., 1999 to be printed, 43(13)
  7. Kihara S, Yoshida Z, Aoyagi H, Bunseki kagaku, 40, 309, 1991
  8. Kim KW, Byeon KH, Lee EH, Yoo JH, Park HS, J. Korean Ind. Eng. Chem., 7(4), 743, 1996
  9. Kim KW, Lee EH, Yoo JH, Park HS, U.S. Patent, 5,904,849, 1999
  10. Kim KW, Byeon KH, Lee EH, Yoo JH, Park HS, J. Korean Ind. Eng. Chem., 8(3), 416, 1997
  11. Schulz WW, Navratil JD, Talbot AE, "Science and Technology of Tributyl Phosphate," Vol. I, Vol. III, CRC Press Inc., Florida, 1984
  12. Benedit M, Pigford TH, Levi HW, "Nuclear Chemical Engineering," Second Ed., McGraw-Hill Book Co., 1981
  13. Epstein JA, Levin I, Raviv S, "Proceedings of Third United Nations International Conference on the Peaceful Uses of Atomic Energy,", 8(818), 436, 1964
  14. Vetter KJZ, Phys. Chem., 194, 199, 1960
  15. Bard AJ, Parsons R, Jordan J, "Standard Potentials in Aqueous Solution," Marcel Dekker Inc. N.Y., 127, 1985
  16. Lee EH, Kim KW, Lim JG, Kwon SG, Yoo JH, J. Korean Ind. Eng. Chem., 9(2), 232, 1998
  17. Thompson GH, Thompson MC, U.S. Report DP-1452, 1977